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Audio mixing is the process of blending multitrack
recordings

- Technical considerations together with creative,
artistic or aesthetic decisions

Achieved with audio effects

- Gain

- Panning

- Equalization (EQ)

- Dynamic range compression (DRC)
- Artificial reverberation




Difficulties with Multitrack Mixing

- High level engineering task.

* Project can have large number of tracks and
varieties of instruments.

« Time consuming: lot of repetitive tasks.

* Requires skills developed over years.

* Requires understanding of sound, music, and
audio.

: You
Thi

e Reason Why Mixing Your Songs Is Difficult




Camera has automatic face Mixing consoles aren’t yet smart
detection, autofocus, red eye, enough to understand the incoming
etc. signal

We need smart mixing consoles.



More people are creating audio content

Podcasts ST > d
= Sound for Video

Music Short-form content
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Producing high quality audio requires expertise
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Intelligent Multitrack Mixing

Intelligent tools that automate the complicated task of music mixing to produce
technically sound and interpretable mixes.

11
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Goals

What is mixing and what should we consider for automix systems?
Framework for understanding and designing automix systems
Technical understanding of current deep learning automix models
How to implement, train, and evaluate these models

|Ideas for future research directions

12



©® ©® DeepLeaming for Automatic | X+

€ 2 ¢ Gl Eipoci b T 6% 0 0@ % »0E
= O & = conens
Deep Learning for Automatic Mixing Mothvton

About the authors
Software
Citing this book
Note

Deep Learning for

Automatic Mixing

Search this book This is a web book written for a tutorial session of the 23rd International Society for Music
Information Retrieval Conference, Dec 4-8, 2022 held at Bengalur, India in hybrid
format. The ISMIR conference is the world's leading research forum on processing,

Deep Learning for Automatic Mixing
searching, organising and accessing music-related data.

AUDIO ENGINEERING

Audio Effects

Overview

Music Production v

AUTOMATIC MIXING Mixing is a central task within audio post-pi where expert is required

to deliver professional quality content, encompassing both technical and creative
inteligent Music Production

oroslom Formutat considerations. Recently, deep learning approaches have been introduced that aim to
roblem Formlation

address this challenge by generating a cohesive mixture of a set of recordings as would
an audio engineer. These approaches leverage large-scale datasets and therefore have

the potential to outperform traditional approaches based on expert systems, but bring

Methods v
Loss Functions

Differentiable sigrial processing their own unique set of challenges. In this tutorial, we will begin by providing an

IMPLEMENTATION introduction to the mixing process from the perspective of an audio engineer, along with a
discussion of the tools used in the process from a signal processing perspective.

inference
Datasets We will then discuss a series of recent deep learning approaches and relevant datasets,
Models providing code to build, train, and evaluate these systems. Future directions and
Training challenges will be discussed, including new deep learning systems, evaluation methods,
and approaches to address dataset availability. Our goal is to provide a starting point for
EVALUATION
researchers working in MIR who have little to no experience in audio engineering so they
Metles can easily begin addressing problems in this domain. In addition, our tutorial may be of
coNCLUSION interest to researchers outside of MIR, but with a background in audio engineering or

signal processing, who are interested in gaining exposure to current approaches in deep
learning.

Future Directions
Conclusions

References

https://dl4am.qithub.io/tutorial Motivation

Music mixing is a crucial task within audio p where expert is

required to deliver professional music content []. This task encompasses both technical
and creative in the process of combining individual sources into a mixture,

often involving the use of audio processors such as equalization, dynamic range
, panning, and IMS20].
Due to this complexity, the field of intelligent music production (IMP) [SRDM19] has

focused on the design of systems that automate tasks in audio engineering. These
Powered by Jupyter Book

systems aim to lower the difficulty in creating productions by novice users, as well as
expedite or extend the workflow for professionals [MS19b].
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Automatic Microphone Mixing*

DAN DUGAN

San Francisco, Calif. 94108

A method of analysis of sound reinforcement problems by means of active and passive
speech zones is outlined. The need for automatic control of multimicrophone systems is
defined, along with the problems associated with the use of voice-operated switches (VOX).
Adaptive threshold gating is proposed as the best solution to the problem of active microphone
detection. The development and performance of two effective automatic control systems is

described.

A ZONAL THEORY OF SOUND REINFORCEMENT

A designer, engineer or contractor who works with
sound equipment every day naturally tends to think only
about the technical details when approaching a new prob-
lem. It is usual to start with deciding where to put the
speakers and microphones, and what models will be best
for the job. In most cascs, this approach is completely
valid. There is always a danger that our preoccupation
with equipment and specifications will make us miss the
real purpose of our efforts. A reinforcement system may
have —1 dB frequency response and still not fill the needs
of its users.

This paper describes some new inventions which prom-
ise 1o make the craft of sound reinforcement easier and
more satisfying. Before getting into the details, I would
like to make a short philosophical excursion into a sketch
for a general theory of sound reinforcement. This theory
is subject to much clarification and improvement.

Each person is the center of a zone in which he can
communicate verbally. The size of this zone depends on the
i ies of the i and on the per-

* Presented May 14, 1975, at the Convention of the Audio
Engincering Society, Los Angeles.

a42

son’s ability as a speaker. The variables affecting the size of
a person’s speech zone may be tabulated:

1) effort

2) vocal ability

3) hearing acuity

4) ambient noise

5) reverberation.

Items 1) — 3) are human variables, 5) and 6) are environ-
mental variables.

The border of this zone is not clearly defined, as all the
variables change constantly, and the human ones are
difficult to measure. If typical ranges of values are assigned
to the variables, however, the design of environments will
become possible in which speech will be relatively easy for
almost all people, just as a door is designed to be high
enough for people to pass without bumping their heads.

A frustrating thing about working in sound reinforce-
ment is the lack of a direct and positive measurement of
the effectiveness of communication transmitted through a
system. The best available measurement is the articulation
loss for AL [2]. M of AL gas
requires a group of observers whose responses can be
treated statistically; this is too complex a procedure for
daily use. AL, can be predicted from room data, but

i ion of these dicti is rare. N
AL g is the best measurement available for speech trans-
mission, and we will use the proposed 15% criterion.

JOURNAL OF THE AUDIO ENGINEERING SOCIETY

Dugan, 1975
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Knowledge-based
or Expert systems

Design a set of rules based to create

a mix based on analysis of the inputs.

Pro: Explainable decisions

Con: Often lacks sufficient complexity

rule

Y

base|

meta  input

data  audio
"y
measurements
HPF
DRC
processing | | EQ
| fader
] pan pot
WY
mixdown £ || | 7
" 2 - - ->» text/metadata
%%C ; —> audio
—_——r _; stereo audio
__________ ,DRﬁg § multitrack audio
EQ I
output
audio

A knowledge-engineered autonomous mixing system
Brecht De Man, Joshua D. Reiss AES 2013



Machine Learning”

Learn to create a mix by leveraging

parametric data collected from pros.

Pro: Greater model flexibility

Con: Requires data (parametric)

*Approaches that use classical machine learning techniques
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Analysis of acoustic features for automated multitrack mixing
Jeffrey J. Scott. Youngmoo E. Kim ISMIR 2011
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I dings of the 3" Workshop on Intelligent Music Prod

Salford, UK, 15 September 2017

TEN YEARS OF AUTOMATIC MIXING

Brecht De Man and Joshua D. Reiss

Centre for Digital Music
Queen Mary University of London
{b.deman, joshua.reiss}@qmul.ac.uk

ABSTRACT

Reflecting on a decade of Automatic Mixing systems for
multitrack music processing, this paper positions the topic
in the wider field of Intelligent Music Production, and seeks
to motivate the existing and continued work in this area.
Tendencies such as the i duction of machine learning and
the i i ity of d systems become ap-
parent from examining a short history of relevant work, and
several categories of applications are identified. Based on

Ryan Stables

Digital Media Technology Lab
Birmingham City University
ryan.stables@bcu.ac.uk

Meanwhile, professional audio engineers are often un-
der pressure to produce high-quality content quickly and at
low cost [3]. While they may be unlikely to relinquish con-
trol entirely to autonomous mix software, assistance with
tedious, time-consuming tasks would be highly beneficial.
This can be implemented via more powerful, intelligent, re-
sponsive, intuitive algorithms and interfaces [4].

Throughout the history of technology, innovation has
traditionally been met wi!h resistance and scepticism, in

lar from p ional users who fear seeing their roles

this systematic review, we highlight some promising direc-
tions for future research for the next ten years of Automatic
Mixing.

1. MOTIVATION

The d isation of audio technology has enabled music
production on limited budgets, putting high-quality results
within reach of anyone who has access to a laptop, a mi-
crophone and the abundance of free software on the web.
Similarly, musicians are able to share their own content at
very little cost and effort, again due to high availability of
cheap technology. Despite this, a skilled mix engineer is
often still needed in order to deliver professional-standard
material. Raw, recorded tracks almost always require a con-
siderable amount of processing before being ready for dis-
tribution, such as bal. panning, lisation (EQ),
dynamic range compression and artificial reverberation, to

nama a fow Fnrtharmara an amatane mncie nraducar will

dlsrupted or made obsolete. Music production technology
may be especially susceptible to this kind of opposition, as
it is ch ised by a tends towards Igia, skeuo-
morphisms and analogue workflows [1], and it is concerned
with aesthetic value in addition to technical excellence and
efficiency. However, the evolution of music is intrinsically
linked to the development of new instruments and tools, and
essentially utilitarian inventions such as automatic vocal rid-
ing, drum hi hanical keyboards and dig-
ital pitch correction have been famously used and abused
for creative effect. These advancements have changed the
nature of the sound engmeenng profession from primarily

hnical to 1 ive. Generally, there is eco-
nomic, technological and arusllc merit in exploiting the im-
mense computing power and flexibility that today’s digital
technology affords, to venture away from the rigid structure
of the traditional music production toolset.

electr

De Man et al., 2017

3. Deep Learning-based Systems

Martinez Ramirez et al., 2021, 2022; Steinmetz et al.

2020; Koo et al, 2023; Vanka et al, 2024
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outcome and predicted
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Datasets



Popular Multitrack Datasets

ENST-Drums

8 channels of drum components
Recordings by 3 drummers
Accessible on request

Size: 1.25 hrs

We have very limited open source,

time-aligned, real multi-track data capturing
various genres and types of music.

fe@\$ o )/ o~

=

/

MedleyDB and Mixing Secrets

Complete songs with varied number
of channels and instruments
Different Genres

Medley (7.2hrs) + Mixing Secrets
(~50hrs)

= vENNNA =

L&)

MUSDB18

Stems have audio effects applied
Four stems: Vocals, Bass, Drums,

and Others

Mostly rock, pop, and metal
~10hrs

Speech recognition: >300 hrs data
Music sequence classification: 280 GB worth data




=

MoisesDB

MoisesDB is a comprehensive multitrack
dataset for source separation beyond 4-
stems, comprising 240 previously unreleased
songs by 47 artists spanning twelve high-level
genres. The total duration of the dataset is 14
hours, 24 minutes and 46 seconds, with an
average recording length of 3:36 seconds.
MoisesDB is offered free of charge for non-
commercial research use only and includes
baseline performance results for two publicly
available source separation methods.

More datasets

Slakh2100

Manilow, Ethan'; Wichern, Gordon?; Seetharaman, Prem’; Le Roux, Jonathan? [ show aftiiations |

Introduction:

The Synthesized Lakh (Slakh) Dataset is a dataset of multi-track audio and aligned MIDI for music source separation and multi-
instrument automatic transcription. Individual MIDI tracks are synthesized from the Lakh MIDI Dataset v0.1 using professional-grade
sample-based virtual instruments, and the resulting audio is mixed together to make musical mixtures. This release of Slakh, called
Slakh2100, contains 2100 automatically mixed tracks and accompanying, aligned MIDI files, synthesized from 187 instrument patches
categorized into 34 classes, totaling 145 hours of mixture data.

<« ' ® c4dm.eecs.qmul.ac. html g
Contact b.deman@gqmul.ac uk to participate in future mix evaluations or to report issues. Visit www.brechtdeman com for more information.

Play mixes

Songs: GoodTime IdLikeToKnow InTheMeantime Lolita Lush

MyFunnyValentine NewSkin NoPrize NotAlone OldTree PouringRoom

RedToBlue SeaOfLeaves SongA SongB UnderACoveredSky Vermont
e Open Multitrack testbed
Mixes (26):
Subjects (36):

54% less snaps. please
76% Bass a little forward, different space than vocals. quite clear.

50% muffled bass, overall image is slightly narrow
869 VOX 100 quiet. drums sound swag but are t0o loud; good amount of bass fregencies (bgtr & kik); reasonable person's panning

(555 of the 2&4 gtr ++; sounds like a record. too much sub bass.
— Vox too quiet.  vocal lovel}
— drums sound swag but are too loud;  drums levelt
+ good amount of bass freqencies (bgtr & kik);  general ik bass  levell  spectnal
+ reasonable person's panning of the 2&4 gir ++;  guitar panning

+ sounds like arecord.  general
~ too much sub bass.  general spectral

- 64% Drums a bit too loud. Kick and toms feel wav up front. with cvmbals wav back. 2 6
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Time domain (Audio Loss)

£( ) )

Audio needs to be time aligned

Loss functions

Frequency domain (Audio
Loss)

L (mm, )

Need to choose proper scaling
that can capture perceptual
qualities of sound

Parameter Loss

L(S.8)

Multiple parameter
combinations can lead to same
result, may penalise the model
unnecessarily

28



Stereo loss function

Loss function to encourage realistic mixes

L1=1
{/ o L1 and L2 loss on stereo

L1=2 > - . .
anning here is more (/ signals encourage panning
perceptually similar but ; g GT all elements to the center.
gives a higher L1 loss

Left Right
Ysum = Yleft + Yrighit éStereo (:&7 y) - EMR-STFT (?jsum; ysum) + eMR-STFT (gdif‘fa ydiff)

Ydiff = Yleft — Yright Achieves invariance to stereo (left-right) orientation

29



auraloss
A collection of audio-focused loss functions in PyTorch

[PDF]

Setup

pip install auraloss

Usage
import torch
import auraloss
mrstft = auraloss.freq.MultiResolutionSTFTLoss ()

input = torch.rand(8,1,44100)
target = torch.rand(8,1,44100)

loss = mrstft(input, target)

https://qithub.com/csteinmetz1/auraloss

Loss function

Error-to-signal ratio (ESR)

DC error (DC)

Log hyperbolic cosine (Log-cosh)
Signal-to-noise ratio (SNR)

Scale-invariant signal-to-
distortion
ratio (SI-SDR)

Scale-dependent signal-to-
distortion
ratio (SD-SDR)

Aggregate STFT

Aggregate Mel-scaled STFT

Multi-resolution STFT

Random-resolution STFT

Interface

Time domain

auraloss.time.ESRLoss ()

auraloss.time.DCLoss ()

auraloss.time.LogCoshLoss()

auraloss.time.SNRLoss ()

auraloss.time.SISDRLoss ()

auraloss.time.SDSDRLoss ()

Frequency domain

auraloss.freq.STFTLoss()

auraloss.freq.MelSTFTLoss(sample_rate)

auraloss.freq.MultiResolutionSTFTLoss ()

auraloss.freq.RandomResolutionSTFTLoss ()

Reference

Wright & Valimaki,
2019

Wright & Valimaki,
2019

Chen et al., 2019

Le Roux et al., 2018

Le Roux et al., 2018

Arik et al., 2018

Yamamoto et al.,
2019*

Steinmetz & Reiss,
2020

Sum and difference STFT loss

auraloss.freq.SumAndDifferenceSTFTLoss ()

Steinmetz et al., 2020

Sum and difference signal
transform

FIR pre-emphasis filters

Perceptual transforms

auraloss.perceptual.SumAndDifference()

auraloss.perceptual.FIRFilter()

Wright & Valimaki,
2019 30
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Model Types

Multitrack E(-’!)

Predicted Mix Ground Truth Mix

Direct Transformation

Black box system that lacks interpretability and controllability (context not incorporated)

32



Model Types

R RRIISRIITIERE : We need a dataset with

Ground Truth @ .

Parameters parametric data
oss L(S.8)
ooooooo
Predicted | oo oo
ai ooooooo
—, Mixing __ _ 100000022

> Console oooooosa| —
Parameters
| doebdd 4d
Multitrack Predicted Mix

Parameter Estimation
(Parameter Loss)

Black box system that allows interpretability and controllability (context not incorporated)

33



Model Types

Predicted Mix

S

Ground Truth Mix

Loss

Multltrack :— ————————————————————————————————————— ‘\ ——————— : ...........................

1 I

1 1

| £ ()

! oooooooal|:

o [299090 =1=1k E( )

: — "~ |oooooo=g|: ’

: Predicted 88888855 b

—b —> Mixing —

e (979808 8

. ___ Whole system needs to be
I differentiable

Parameter Estimation
(Audio Loss)

Black box system that allows interpretability and controllability

(context not incorporated)
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DDSP: Differentiable Digital Signal Processing



Neural networks that control DSP

Neural network

i Control parameters

OOOOOOEE
o fm— |

$99486 &4

Signal processing

High-fidelity with minimal risk of introducing artifacts
Audio processing is visible and controllable by end users

Significantly more efficient enabling operation on CPU

36



Neural networks that control DSP

@ Differentiable Signal
¥~ Processing

...but this requires harmonization of signal processing and gradient-based learning

37



Techniques

Automatic differentiation (AD)
Engel et al. 2020

Neural proxies and hybrids (NP)

Steinmetz et al. 2020, Steinmetz et al. 2022

Numerical gradient approximation (NGA)

Martinez Ramirez et al. 2021

38



Automatic Differentiation

gun

fo(x)

o>

h(x,p) SI‘ <t [ -y

Engel, Jesse, et al. "DDSP: Differentiable digital signal
processing." ICLR (2021).

O
PyTorch TensorFlow -‘M

Explicitly define signal
processing operations in
autodiff framework

39



(1) Pretraining

(2) Training
x —

Neural Proxy

Waveform
x h (X, p) Processed waveform
Parameters Y
Pp

Neural network
— Processed waveform

—

(3) Inference

Steinmetz, Christian J., et al. "Automatic multitrack
mixing with a differentiable mixing console of neural
audio effects." ICASSP, 2021.

-

9 .
fo(x) Frozen DSP neural proxy
P
l 3
Neuralgnetwork _ S’ - E ....... - y

40



Gradient Approximation

h(x,p;)) _ h(x,p+ &eAP) — h(x,p — eAP) @
pi 2eAP ’

where ¢ is a small, non-zero value and A” € R? is a ran-
dom vector sampled from a symmetric Bernoulli distribu-
tion (AF = £1) [46].

Simultaneous perturbation stochastic
approximation (SPSA)

Martinez Ramirez, Marco A, et al. "Differentiable signal
processing with black-box audio effects." ICASSP, 2021.

41



Creating a differentiable mixing console

X1 X9 XN
[,E'lc‘l’ferj"""""'l,E"fT‘ier,J """""" ( E"E'[’df i ] Encoder Post-processor
Z Z

Transformation Network
ZN
i v v
[ Context ]

Z, cC

Pn Xn
D
—
Zq Cc Zo €c .. ZN Cc
R R A
Proc. ............. Proc ............ Proc.
| | | !
X1 po X9 p]_ e XN PN Tanh
|2 A S A 2 |
Transform = Transform = Transform \J
R o >
[ = )

l '

yL YR
Steinmetz, Christian J., et al. "Automatic multitrack mixing with a
differentiable mixing console of neural audio effects." ICASSP, 2021
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Creating a differentiable mixing console

Q0
0L009%55

oooooo
ooooge

Proxy network é éééé éé

) Polarit » : : .
4—{ GamH Inversign EQ H Compressor H Reverb | Fader [:j Pan [:: Differentiable channel strip
) ) ) ;
| | |
5% 8§ Z D3 22 Z = - T~ -
5 s 8 332 2 g s "8 3 S kX 5 g
5%3 853 * g

Steinmetz, Christian J., et al. "Automatic multitrack mixing with a
differentiable mixing console of neural audio effects." ICASSP, 2021.



Creating a differentiable mixing console

Backpropagation
(Training)

X1 X9 XN
o T
T T T

Z1 Z zZN

v v v
[ Context ]

L

r 1 N
zq C Zy C - ZN C
L AL A AN A B |

Proc. ~{ Proc. |~ Proc.

| | |
X1 Po X9 P1 - XN PN
LA AU B A A |

Transform === Transform ==

Transform

[l¢ ¢2¢ ¢i]

l

L £/

Steinmetz, Christian J., et al. "Automatic multitrack mixing with a
differentiable mixing console of neural audio effects." ICASSP, 2021.

l

Yr

Input tracks

Latent features

Parameter estimators

Differentiable audio effects

Predicted mix
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DASP

Differentiable audio signal processors
in PyTorch

mo e

Compressor /

v

it

Reverberation Parametric Equalizer

Expander
e (@) Y
Distortion Stereo Widener Stereo Panner

45



DASP S
Differentiable audio signal processors )
in PyTorch

V.

f(") Pure functional interface for each audio processor

QA
<8

iz Differentiable implementations enable backprop

§5XE8 Can target CPU or GPU with support for batching

@ Permissive open source license (Apache 2.0)

46



GRAFX: An Open-Source Library for Audio Processing
Graphs in Pytorch

GRAFX

Documentation GRAFX

&\ oy GRaFx is an open-source library designed for handling audio processing graphs in pyTorch. One can
create and modify a graph, convert it to tensor representations, and process output audio efficiently in
GPU with batched node processing. The library is rted with various di audio
INTRODUCTION h s :
. processors, which enables end d of processor or their estimators (e,
Audio Processing Graphs graph neural networks) via gradient descent. The code can be found in this repository.
|
Differentiable Processors

Batched Audio Processing Installation
GRAPH API pip install grafx
grafi.data
oip install grafx e Some processors use convolutions; for their efficient processing, install F1ashfrTcony from the following

github repository.
grafx.draw

grafx.processors stereo

grafx.utils
Contents
EROCRSSORAM INTRODUCTION
(00 00 00 00 00 00 00 00 00 0 (1[0 07 07 00 07 07 07 07 01 0
grafx.processors.eq o Audio Processing Graphs
[e] [e] [e] [c] | [<] [e] [e] (] (o] [e] [e] <] [ [ [e] [ « Differentiable Processors
4] [r] (9] [r] i

o Batched Audio Processing
graf.processors.dynamics

EHeHeaH-]
~HeHoHaH-]

\

[~H=HzH=H-]
FHeHeH-]
EHeHal{aH-]
FHeH=H>H-]
eHeH=H-]
[EHeHeH=]
EHeHaH-]
[FHeH=H-]

GRAPH API
- grafx.processors.reverb o grafxdata
'n grafx.processors.delay e grafx.render

o grafx.draw

grafx.processors.containers
o grafxutils

.y,
N
-y

EH=H3]
X
eH=HsH=HzH-HaH=H-]

I

GRAFX: An Open-Source Library for Audio Processing Graphs in Pytorch, Lee et al. (DAFx24, Sep 2024)
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Direct Transformation

average features

Multirack MSS [ F (w) D P P s (w) M) 2
Dataset

(k)

wet v
srems [(peta Jpomalized o [ omatc viser
20, z® L J stems - 1) |
Training
Inference v
dy ((eta 1 [ Automatic Mixer
stems L | 20 |

Wave-U-Net for drum mixing [a]

Training Inference
arsacy-mired
mistrs track

Mixing with out-of-domain data [c]

path ofinput rack
pathof rfersnce track

s 8 model input ()
A=At
Mixing Style
i condition | Converter
— MSS model 4 © o] Pxoncoder | )| (tixpxclonerv)
rachs . . foner
eteence
FXmanipulator mativacks || otber A4 prene 599 mode] output (),

| ground truth (z1)

Mixing style transfer [d]

[a] A Deep Learning Approach to Intelligent Drum Mixing With the Wave-U-Net, Martinez-Ramirez et al. (JAES Mar, 2021)

[b] Automatic multitrack mixing with a differentiable mixing console of neural audio effects, Steinmetz et al. (ICASSP 2021)
[c] Automatic music mixing with deep learning and out-of-domain data, Martinez-Ramirez et al. ISMIR 2022)

[d] Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects, Koo et al. (ICASSP 2023)

[e] Diff-MST: Differentiable Mixing Style Transfer, Vanka et al. (ISMIR 2024)

loss computation

Parameter Estimation

A Controller network
Waveform 1 —-{ Encoder Post-pi "
—) (—> Waveform 1 + Transformation network
Waveform 2 —'[ Encoder Post-pi " i
Waveform 2 > Transformation network Mix
I P
Waveform N ——_Encoder — P Transformation network

Waveform N >

Mixing with neural mixing console [b]

0 ( N
Tracks i Differentiable Mixing Console P"}i‘;‘“d
FT T T T o
( Denormalization ]
[ | | [
[ MLP ]
'BEEEX i
o e AR AT
‘ Transformer Encoder ¥
tt
1 B0 B0 § | B B
58 06° 0
1
I L S S ot
onN / eNN
| p— I— B —
0 1 2 3 Left Right
Tracks eference
& song
Mixing style transfer with differentiable mixing console [e] 49
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Mix-Wave-U-Net

A Deep Learning Approach to Intelligent Drum
Mixing with the Wave-U-Net

Marco A. Martinez Ramirez!*, Daniel Stoller'*, AND David Moffat?, AES Student Member

(m.a.martinezramirez@gmul.ac.uk) (d.stoller@gmul.ac.uk) (david.moffat@ plymouth.ac.uk)

Y Centre for Digital Music, Queen Mary University of London, London, United Kingdom
University of Plymouth, Plymouth, United Kingdom

* These authors contributed equally to this work.

The development of intelligent music production tools has been of growing interest in re-
cent years. Deep learning approaches have been shown as being a highly effective method
for approximating individual audio effects. In this work, we propose an end-to-end deep neu-
ral network based on the Wave-U-Net to perform automatic mixing of drums. We follow an
end-to-end approach, where raw audio from the individual drum recordings is the input of the
system and the waveform of the stereo mix is the output. We compare the system to exist-
ing machine learning approaches to intelligent drum mixing. Through a subjective listening
test, we explore the performance of these systems when processing various types of drum
mixes. We report that the mixes generated by our model are virtually indistinguishable from
professional human mixes, while also outperforming previous intelligent mixing approaches.

X1 X2 ... XN

Convid LeakyRelLU

| BatchNorm1d | BatchNorm1d
LeakyRelU Convid
> Concat
Downsampling Upsample Upsampling
Block 1 Block 1
Dowr ing Block 2 > L ing Block 2
Dy Block L > ] ling Block L
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A Deep Learning Approach to Intelligent Drum Mixing With the Wave-U-Net

Mixed audio (multi-channel)

+
\—4, [ 1D Convolution, Size 1

4
..................................................... »|
Crop and concat
A
‘ 1D Convolution, Size 15 ‘ l 1D Convolution, Size 5 ‘
____________________________________________________ >
v Crop and concat
‘ Downsampling ‘ ‘ Upsampling |
Downsampling block 1 Upsampling block 1
v
Downsampling block 2 =~ -=---ss-smemeeen > Upsampling block 2
¢ Crop and concat T
Downsampling block L~ ~=-===s-smemeonnn » Upsampling block L

Crop and concat
\—P} 1D Convolution, Size 15 }J

/

» /;k | @
| - -
\,,-/ |[’ 9\ \

&

"'. B _—
a?

Drum Tracks
Wave-U-Net

e Pros: directly learns the audio transformation

e Limitations: Only drum mixing, number of tracks is fixed

A Deep Learning Approach to Intelligent Drum Mixing With the Wave-U-Net 52



Wave-U-Net

Source 1 output

Source K-1 output

Mixture audio

v Mk e b |

WAVE-U-NET: A MULTI-SCALE NEURAL NETWORK FOR
END-TO-END AUDIO SOURCE SEPARATION

Daniel Stoller
Queen Mary University of London
d.stoller@gmul.ac.uk

ABSTRACT

Models for audio source separation usually operate on
the magnitude spectrum, which ignores phase information
and makes separation performance dependant on hyper-
parameters for the spectral front-end. Therefore, we in-
vestigate end-to-end source separation in the time-domain,
which allows modelling phase information and avoids fixed
spectral transformations. Due to high sampling rates for
audio, employing a long temporal input context on the sam-
ple level is difficult, but required for high quality separation
results because of long-range temporal correlations. In
this context, we propose the Wave-U-Net, an adaptation
of the U-Net to the one-dimensional time domain, which
repeatedlv resamples feature maps to compute and com-

Sebastian Ewert
Spotify
sewert@spotify.com

Simon Dixon
Queen Mary University of London
s.e.dixon@gmul.ac.uk

This approach has several limitations. Firstly, the STFT
output depends on many parameters, such as the size and
overlap of audio frames, which can affect the time and
frequency resolution. Ideally, these parameters should be
optimised in conjunction with the parameters of the sep-
aration model to maximise performance for a particular
separation task. In practice, however, the transform pa-
rameters are fixed to specific values. Secondly, since the
separation model does not estimate the source phase, it is
often assumed to be equal to the mixture phase, which is
incorrect for overlapping partials. Alternatively, the Griffin-
Lim algorithm can be applied to find an approximation to a
signal whose magnitudes are equal to the estimated ones,
but this is slow and often no such signal exists [8]. Lastly,
the mixture phase is ignored in the estimation of sources.

=z

Convolution, Size 1 |
A

A

Upsampling |

Upsampling block 1

psampling block 2

T
T

psampling block L
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Mix-Wave-U-Net

Downsampling block

Xl X2 xN .........................................

KRS

|\ Convid
BatchNorm1d
| LeakyReLu |

[ Downsample ] Downsampling

l Block 1
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Mix-Wave-U-Net

Downsampling block

X1 X9 ... XN

R
)

| Convid

BatchNorm1d

[ LeakyRelLU ]

[ Downsample ] Downsampling

l Block 1

Downsampling Block 2

\/

Downsampling Block L

»
{

\—ﬂ Convid
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Mix-Wave-U-Net
Upsampling block

X1 X9 ... XN

R !
|

Convid ] [ LeakyRelLU ]
BatchNorm1d BatchNorm1d
[ LeakyRelLU ]

[ Convid ]
>{ Concat ]
[

[ Downsample ] Downsampling Upsample ] Upsampling

l Block 1 T Block 1

Downsampling Block 2 > Upsampling Block 2

Downsampling Block L > Upsampling Block L

\—’ﬂ Convid ~—1
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Mix-Wave-U-Net
Output layer

A A~

YL YR

tf

X1 X2 ... XN

Decolen (G = 100 =2 9E) / ........................

Decoders(Cjp, = 200, Cpyr = 100) /

/

DeCOdCrG(Cin = 3200, Cout = 1600) /
[ Lincar(Ci, = 6400, Cpuy = 32000 ] 77 >

hidden size=3200
2 bidirectional layers

Encoders (Cj, = 1600, Cour = 3200) '\

Encoder(Cip, = 100, Couy = 200) b

Encoder (Cip, = 2, Cour = 100) \ id

/\/\\/WW

[ Convid ]
> Concat ]
A

[ LeakyReLU ]

| BatchNormid |
[ Convid

>[ Concat
[ Upsample

!

Upsampling Block 2

Upsampling Block L

Upsampling
Block 1
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Controllability
Interpretability

1472
l
l
ES

Multitrack Neural Mix
Network

Can we make it controllable? (2021)




Automatic multitrack mixing with a differentiable mixing console of neural audio effects

A Controller network . . .
7 e Pros: Permutation invariant, works for any
Waveform 1 — Encoder ——7———— =% Post-processor — . Transformation network . L.
Wevetorm 2 |- [N E— ‘ , number of tracks, allows multitrack mixing
Waveform 2 -+ Transformation network Mix
-| 5 : e Limitations: neural emulation of effects are
Waveform N —— Encoder Post-processor ——— > Transformation network

Waveform N >

difficult to train, doesn’t work well for all

cases (Could be due to lack of enough data)

| _ Parameter Multitracks
Embedding [\Predictor

00000050
oooooo88| _ ....||||..|||||

Predicted Mixing

Console Parameters 000000 oo

499484 &

Neural Emulation of
Chain of Audio Effects

Loss — | L (W )

Predicted Mix

Multitracks

Context

Context
Embeddmg A Deep Learning Approach to Intelligent Drum Mixing With the Wave-U-Net 59



Differentiable Mixing Console

Parameter estimation

'y

X1 X9 e XN
L Enc‘l’de’ } """""" \ E“°]°de' e [ E”‘?;’der } Encoder Post-processor Transformation Network
z, Zo o zZN = z "
n n
v v v .
[ Context ] Y
( L] N VGGish
zy c Z3 c ...Zy ¢
vy vy B MLP
Proc. ............. PrOC. ............ PrOC.
| | | v
X1 Po X2 P1 - XN PN Mean Tanh
B v v I
Transform = Transform === Transform ‘L

LN l] " >
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Differentiable Mixing Console
Encoder

xl X2 aee XN
[ Encoder } Encoder { Encoder } Encoder
[ | I
Z Zzy ZN X
! ! ¥ .
[ Context ] Y
Pl ) 3 VGGish
Z1 V) C zN C
I [ [ I 1
Mean
\/
Zy

Weight sharing
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Differentiable Mixing Console
Post-processor

Post-processor

Z, cC
— :
z; c V) C L ZN C
A AR T A 2 MLP
Pro ............. Proc. ............ Pro
| | | !
X1 Po X2 P1 - XN PN Tanh
P o o Clj
Pn
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Differentiable Mixing Console
Transformation Network

Transformation Network

X1 Po X2 P1 - XN PN
Y v v v vy ¥
Transform = Transform = Transform
vV vy 4y
)
VL VR
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Differentiable Mixing Console

Gain + Panning (Proxy network is not used)

; ; Polarity
celi Inversion

uen — !

OAIY —»

T

uey — »
ued

Gain + EQ + Compressor + Reverb + Panning

o

Polarity
Inversion

uey —

OAIOY —

p x

}

MLP TCN Block 1
T

TCN Block 2

)

TCN Block L

J

!

¥y

Proxy network

\ A

Fad

EQ H Compressor H Reverb

(2) 1sys mo

(€) pueqisi

oW =

N @ I D I g 01 < s} g =

a 2 @ 23 5 2 % g & @

o g 2 3 28 @ o g =

8 & o & = 8 c < 3
=] = @ 5 =

3 a o] o (] x

E S = Q %

CER AT 5

xiw A1q

uey) —p
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Differentiable Mixing Console
Proxy Networks

X

'

TCN Block 1

TCN Block 2

TCN Block L

'

y
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Differentiable Mixing Console
Proxy Networks

X

'

TCN Block 1

TCN Block 2

TCN Block L

'

y

|
[

7z —>

[

Xn
)
Y
Convid |
BatchNorm ]
FiLM Cg)
PReLU ]
i TCN Block
Xnt1
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z

Differentiable Mixing Console
Proxy Networks

X

'

TCN Block 1

TCN Block 2

TCN Block L

'

y

z

|
[

—_—

[

Xn
)
Y
Convid |
BatchNorm ]
FiLM Cg)
PReLU ]
i TCN Block
Xnt1

Z >
Linear
t L In
B
FiLM Block
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Limitations so far

Previous methods have not yet achieved the level of professional

audio engineers mixes

It has been hypothesized that the bottleneck of performance can
be resolved with a large enough dataset

68



How can we address data bottleneck? (2022)



Challenging

S

Dry multitracks & Mixes

Data driven approaches need data,
however, collecting dry data is difficult
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Research Question

Can we use wet multitrack
music data and repurpose it
to train deep learning models
that perform automatic music

mixing?
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How ?

> Wet multitracks already

contain the desired mixing
effects, which are what the

networks need to learn

A
[0 o )\
|

—

Fx Normalization!
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Automatic music mixing with deep learning and out-of-domain data

el ol
e
..|I|I..|III|||||||. .I|I|||II|.
,...|I||..|I|||||I|I|..,.I|I||||,|.

—>

Wet Multitracks

Fx-Normaliser| —

""l‘||“'|HHW|"""|‘”|""
,...||||..|||H MII‘"'IIIHII‘I'

Applies averaged Normalised
effects to all Multitracks
tracks
target ®

average features
Multitrack MSS Fw)®PPPH §(w)® £®
Datiset | | St R A A

mixture

wet Y
stems - normalized
———>| Data preprocessing
2z . z® Stemsj:(k)
Training
Inference

A4
. ——»| Data preprocessing
stems

output

Automatic Mixer - ')mixture

learned weights Y

Automatic Mixer

->» ,g

....|u|..l|\HHH“....nl”“K..

Predicted Mix

Black-box Loss —

mixing

Pros: uses of wet/processed stems to train,

creates possibility for using extensive source

separation datasets with wet stems

Limitations: lacks interpretability and

controllability, works for 4 stems

Automatic music mixing with deep learning and out-of-domain data
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Fx-Normalization

Direct transformation



input stems

Fx Normalization

Fx normalized stems

mixture
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Original Image

Data Normalization

Original Image

Normalized Image

We apply the same to audio effects !
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magnitude dB

Fx Normalization—EQ average features

— vocals
—— drums
— bass

—— other
—— piano
—— guitar
—— strings
—— brass

10°

10! 102 103
frequency (Hz)

104
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magnitude dB

EQ Normalization

— input

100 ].01 102 103 104
frequency (Hz)




We propose loudness, EQ, panning, compression and
reverberation normalization procedures
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wet
stems
e

Training

Method

gy

—

target

1R mixture
v L > Y

. . normalized
Fx Normalization| gioms
7k

output
Automatic Mixer - *mixture

!learned weights y

We use data preprocessing that calculates average features
related to audio effects on a music source separation dataset
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wet
stems
e

Training

Method

g0y

—

target

1R mixture
: 2 O SR ELLER LR LR LR L >» Yy
N &

‘ ] normalized
Fx Normalization| ccms
7k

output
Automatic Mixer - *mixture

!learned weights y

Based on these features, we “effect-normalize” the wet stems
and then train an automatic mixing network
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Method

average features
Multitrack MSS F(w) PP PE s(w)*) c® target
Datgsat S SRR s

wet y >® ------------ » vy

stems 5 .. |normalized o > output

21 2® Fx Normalization|  gors ® Automatic Mixer mixtire
v 3 ‘ d
Training : learned weights y

During training, the model learns how to denormalize the input
stems and thus approximate the original mix



Method

average features

Multitrack MSS
Dataset

stems | normalized

) > [Fx NormalizationJ Stemsi(k)

Training

Inference V

stems

dry —>[Fx Normalizationf——>»

J

wet y >®

Automatic Mixer

target
mixture

output
mixture

/learned weights y

Automatic Mixer

_) ,g

At inference, the same preprocessing is applied to dry data
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Conclusion

We developed a method that performs automatic loudness, EQ,
panning, compression and reverberation music mixing

Fx Normalization works '—Our approach leverages on wet data
Resulting mixes compared to professional mixes scored higher

in terms of Clarity and are indistinguishable in terms of
Production Value and Excitement
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Context-Aware Systems
(2023-24)




80%

60%

40%

20%

0%

Arranging and
labeling stems

Automatic
audio effects

Automatic
mixing

M Yes
M No
Other

Automatic
mastering

Why such a huge
percentage is
saying no?

m Audio Engineering Society

@ Convention Paper

Presented at the 154th Convention
2023 May 13-15, Espoo, Helsinki, Finland
This paper was peer-reviewed as a complete manuscript for ion at this ion. This paper is available in the AES
E-Library (hitp:/fwww.aes.org/e-lib), all rights reserved. Reproduction of this paper; or any portion thereaf, is not permitted
without direct permission from the Journal of the Audio Engineering Society.

Adoption of Al Technology in the Music Mixing Workflow: An
Investigation
Soumya Sai Vanka', Maryam Safi2, Jean-Baptiste Rolland?, and Gyorgy Fazekas!

1 Queen Mary University of London, London, UK
2Steinberg Media Technologies GmbH, Hamburg, Germany

Correspondence should be addressed to Soumya Sai Vanka (s . s . vanka@gmul . ac . uk)
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F ./’ Results are generic and do not understand the context

Black box systems: limiting control and interpretability.




What engineers want?

Context Controllability
M \ Interpretability
Multitrack Neural Mix

Network
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Various media used by artists to
communicate their expectations of the mix

Sends demo mix
Sends reference songs
Gives verbal instructions

Provides semantic descriptors

Chat about expectations/ ideas

Never [ Sometimes [l Always

N wwamu&& Freely available online

[ Ea—

S.S. Vanka, M. Safi, JB. Rolland, and G. Fazekas,
“The Role of Gommunication and Reference Songs

'e Mixing Process: Insights From Professional Mix Engineers;
. Audio Eng. Soc., vol. 72, no. 112, pp. 5-15 (2024 Jan /Feb)
hitps/doi.org/10.17743/jaes 2022.0123.

The Role of Communication and Reference Songs
in the Mixing Process: Insights From Professional
Mix Engineers

M M ? SOUMYA SAI VANKA,"* AES Student Member, MARYAM SAFI,” AES Member,
ow is context communicate e
L]

JEAN-BAPTISTE ROLLAND, AND GYORGY FAZEKAS'
de) k)

!Centre for Digital Music, Queen Mary University of London (QMUL), London, UK
2Steinberg Media Technologies GmbH, Hamburg, Germany




Context

1372

Multitrack Neural Mix
Network

Can we build a system that incorporates context? (2023)
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Reference Song

Information derived from Reference Song

Processing of a specific element
Spatialisation
Balance

Sonic sound

I Sometimes

B Always

Acts as a pointer for the sound of the final mix

oren (Y ncces Foely availablo onine

@)y |

PAPERS

S.S. Vanka, M. Safi, JB. Rolland, and G. Fazekas,
Ref

e Mi Engineers”
J. Audio Eng. Soc.,vol. 72, n0. 112, pp. 5-15 (2024 Jan Feb).
hitps:/idoi.org/10.17743/jaes 2022.0123

The Role of Communication and Reference Songs
in the Mixing Process: Insights From Professional
Mix Engineers

SOUMYA SAI VANKA,"" AES Student Member, MARYAM SAFI,” AES Member,
(s.s.vanka@qmul.ac.uk) (m.safi@steinberg.de)

JEAN-BAPTISTE ROLLAND, AND GYORGY FAZEKAS'
Gb. de) 4 k)




Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects

Training e o e Pros:incorporates context
mput oot - drums ~[fj—— ‘
- multi:l_afli_s;} W miltfrra?ﬁjs' 0 ‘ '/(’ ‘;;W \‘~0 mocelinput (,\‘): th rO U g h refe re n Ce
Multitrack Bl o X . i i " Is A i
5 =N : Aip-tr T . .
Mixi e Limitations: mix to mix
' ixing Style
""""""""" rums b condition | Converter . .
reference MSS model - Ca ° FXen;oder <) | (MixFXcloner ¥ ) tran Sfe I, | ac kS Inte p reta b I I |ty

norma
reference y :
it i A Ak h ra i & fixed H
FXmanipulator Imatiracks M- F ’ model output () : .

5 loss computation

ground truth (gt)

Context ! "“||||'II|’ ‘ ‘ ||"'I|||”||'|' i
| Reference Mix : Song 1 | — ""||l|"||mH||||""|||”|l'l'
“H!?‘”Hl l H”'"I]IIMJ”’ Predicted Mix:
: Song 2 mixed in the style of Song 1

Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects 92



What is Feature Learning?

Feature Learning Task Transfer

Music Tagging

Taggin, .
"""""""""" > el [ electronic, no vocal, fast, synth, ...

1
1
|
: Model
/ Input —\ Learned :
. Representation |
Raw Signal 1
1
Mm /l !M Mn S
Feature ] Music Captioning
1
or =P | Learning > : i
Model ! i Caption This music is instrumental. The tempo
Data Features R T T Model is fast with synthesiser arrangements ...
\- J

Context-aware Music Mixing

output mix
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Contrastive Learning - Recent Applications

Contrastive Pre-training

Image | F\“\\.

Pepper the Toxt

aussie pup  — Encoder |
il

—

>

dnege 1t >

Radford, Alec, et al. "Learning transferable visual models from natural language
supervision." ional conference on ine learning. PMLR, 2021.

— Text
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Elizalde, Benjamin, et al. "Clap learning audio concepts from natural language supervision." ICASSP

2023. |EEE, 2023.
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Contrastive Learning - Training Method
SimCLR CLMR

Attract Attract

Zj0 [T [-eeeee >0 %0 Projections Zi2N [OTH-0O<---oee >l Zj,2N
attract

§8proj(')J gproj(') ]gproj(') gpmj(')
A B A A

hi,) EEENE--@ ~ EEEEE--@ #jo Representations kv EEEEN--E & EEEEE--B 42N

8enc() ‘ 8enc(") | genc(') ‘ genc(')

A A

S ——— --mm

Augmented, correlated
examples of rawaudio X 2N Yj.2N

Xi,0 X0

Raw audio waveforms

Augmentation X0 XN

Chen, Ting, et al. "A simple framework for contrastive learning of visual Spijkervet, Janne, and John Ashley Burgoyne. "Contrastive learning of 95
representations." International conference on machine learning. PMLR, 2020. musical representations." ISMIR 2021.



Contrastive Learning on Audio Effects

Utilizes contrastive learning to understand audio effects.

Objective: to disentangle mixing styles from musical content.

Apply learnt representation to downstream task such as mixing style transfer.
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Disentangled Representation

t-SNE visualization on FXencoder

o

dimensional reduction on feature space

10 different random FX manipulation (color)

on 25 different songs (point dot)

MEE
(model trained with standard approach)
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Disentangled Representation - Individual Instrument

drums

P
P
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vocals

bass

other
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Music Mixing Style Transfer with FXencoder

path of input track

Training
path of reference track

input drums ——/WW«—W
multitracks :
N, bass ~Mp— % model input (x)

Multitrack F T ocdls M—W‘* :

MSS Dataset ;
- é other WJM‘Y‘“
o NN o “ Mixing Style
normalize arums 4""1 - 'm condition converter
bass  gaw-t-wed- (ref) . e
reference o3 FXencoder |... (2. | (MixFXcloner V)
G e multitracks vocals M D
FXmanipulator “ other M‘/LW_. pre-trained & fixed model output o). ' p

loss computation

'
................................................................................................................................

ground truth (gt)

Training the mixing style converter is performed by utilizing the representation extracted with
already-trained FXencoder
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Music Mixing Style Transfer with FXencoder

path of input track

Inference

already-mixed
mixture track drums —-/m\-———'mv—’
input ,
-MM smsesmemeaaney multitracks bass ,_._:f#‘*——-——— model input (x)
: P > e i M AT n St
: i vocals MMJ‘" Sl

........... path of reference track

MM~ AM- - FX
E normalize other I{MJMTV
' Mixing Style
........ j drums fob-M— . condition | Converter
MSS model ‘ bass  gant-mad- \ re \
__________________ 5 Gy “ercaTer V] (MixFXcloner ¥)
reference vocals M
multitracks -
other W pre-trained & fixed model output (y) :

e During inference stage, we can transfer mixing style of mixture-wise inputs using a music
source separation (MSS) model
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Input Mix: =)

Target Style Mix

Individual Output

Demo - Mixing Style Transfer

Reference A

0

0

Interpolated
Output

model input (x)

S A
Reference B ™o
)
FXencoder
Attt ?
)

Mixing Style
Converter

(MixFXcloner V')

model output (y)

Try with your samples!
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Context Controllability
Interpretability

&

Multitrack Neural Mix
Network

147

Can we make a context-aware
system controllable? (2024)
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Diff-MST: Differentiable Mixing Style transfer

Inputs: Tracks (8- 20) and a stereo reference song

Output: Mixing console parameters and predicted mix

Reference
Song

A s
0 _...:/ "1 Predicted
—— —>  Mix
1 —-
Tracks Diff-MST
2 —»~
3 —» H DMC Control

Parameters

DIFF-MST: DIFFERENTIABLE MIXING STYLE TRANSFER

Soumya Sai Vanka't Christian S

Joshua Reiss!

s.s.vanka@gmul.ac.uk,

ABSTRACT

Mixing style transfer automates the generation of a multi-
track mix for a given set of tracks by inferring production
attributes from a reference song. However, existing sys-
tems for mixing style transfer are limited in that they often
operate only on a fixed number of tracks, introduce arti-
facts, and produce mixes in an end-to-end fashion, with-
out grounding in traditional audio effects, prohibiting in-
terpretability and controllability. To overcome these chal-
lenges, we intr d e Diff. MST a framework comprising a

-l L

[ - R -

711

a2

Jean-B rAisten 11

Gyorgy Fazekas!
! Centre for Digital Music, Queen Mary University of London, UK
2 Steinberg Media Technologies GmbH, Germany

c.j.steinmetz@gmul.ac.uk

Differentiable Mixing Console

i
:

Transformer Encoder



Reference Predicted
S(Ig Mix

DMC Control
Parameters

Differentiable
Mixing Console

! M

Tracks

1
Tracks Pytorch-based Model

The mixing console is required to be differentiable, so that we can do
end-to-end training of the system. Differentiable basically means we
can backpropagate and calculate gradients which allows to learn the
weights (learn a transformation).

Summing block

—
—

B | B |

Master Bus

Implemented using

DASP

Differentiable audio signal processors
in PyTorch




0
1 .
Tracks Differentiable Mixing Console Predicted
2 Mix
3 A
3 A A 3 A
Parameters
[ Denormalization ]
[ | [ [ [
( MLP )
Loss
Transformer Encoder
6
® ® Master
l I Bus
oy NN N
I [ [ [
0 1 2 3 i v
Tracks & Reference
Song

https://sai-soum.qithub.io/projects/diffmst/



https://sai-soum.github.io/projects/diffmst/

Datasets

N\

Multitracks: MedleyDB and Mixing Secrets Reference Songs: MTG Jamendo
e Complete songs with varied number e 55k songs in MP3 format
of channels and instruments e Different Genres

e Different Genres
e Medley (7.2hrs) + Mixing Secrets
(~50hrs)



Losses

- MR-STFT: Multi-resolution STFT loss from
auraloss
- AF-Loss: handcrafted weighted average of
MSE loss of MIR features specific to mix
(from literature)
- Dynamics: Root mean square (RMS) and
Crest factor (CF)
- Spatialisation: Stereo width (SW) and

Stereo imbalance (SI)
- Spectral: Bark spectrum (BS)

T)(x) = RMS(x) =

max(|z;|)
T>(x) = CF(x) = 201log;, (W(x)) ;we = 0.001
“4)
T3(x) = BS(x) = log(FB - |[STFT(x)| +€) ;ws=0.1
®)
N - )2
Ty() = W) = B mt O = oml
¥ 2im1(ZLi + TRi)?
(6)
Ly 2 LW 2
Ts(x) = SI(x) = 1;723\,:1 xfl 1;7 Z’]\?l x;" sws = 1.0
N 2im1 Thi + ¥ 2ui=1 T o

Pi)’ TJ'(Mri)

®)

2 5
Loss(Mp, M,) = %ZZ “MSE (T




Training Method 1

- Arandom mix is created using tracks and random DMC
parameters
- The random mix is split into equal halves
- One half is used as reference, the other as ground truth
- Losses tested: MR-STFT and MR-STFT plus fine tuning with
AF loss
- Pros:
- Ground truth is available
- MR-STFT loss can be used
- Drawbacks:
- During training, model see a lot of diversity
- Most often really bad sounding mixes
- Performance:
- MR-STFT only: fails to learn panning and compression
- MR-STFT plus fine tuning with AF loss : Improves
panning performance, not the best yet

0

[P S —

——( ¥
2 4
_> "' i
— | Diff-MST -
_. -
— J
——
4
A IL
f e
‘ DMC (Mix Generation) ‘
0 1 2 3
Tracks
A | B




Training Method 2
(Best Performance)

- Input:
- Multitracks from MedleyDB and Cambridge
- Reference Songs from MTG-Jamendo
- AF-Loss computed between reference and predicted mix
- Non reference-based loss
- Performance
- Best performed
- MIR-based loss forces to learn crucial features of
the reference mix.

0

LR

— |

—

|

Diff-MST

Reference Song
(from
MTG-Jamendo)

—{ Mp |

AF



Overview of Diff-MST models

Model

Diff-MST-MRSTFT

Diff-MST-MRSTFT+AF

Diff-MST-AF

Multitrack

MedleyDB +
Cambridge
Multitrack

MedleyDB +
Cambridge
Multitrack

MedleyDB +
Cambridge
Multitrack

Training Data

Reference

Random Mix

Random Mix

Songs from
Jamendo

Ground Truth

Unreferenced section
of Random Mix

Unreferenced section
of Random Mix

Referenced song from
Jamendo

Loss
(between predicted mix
and ground truth)

MRSTFT

MRSTFT and then
fine-tuned on AF loss

AF loss



Baselines

........... path of inpu,
path of reference ti.
rums —/m,ﬁwﬂ"
R ol TTTRR L.
vl - 3
otber ‘(fMMh‘

MST [a] | s
duns il ‘ condton | Converter
\ (

b esrees o Ftereoder ()| yeyeioner|
s S ¢
. MM* pre-trained & fxed mo&loutpm(\)li,

| ground tuth (g)

model performs a mix-to-mix transformation, we make use of

loudness normalise the tracks to -48.0 dBFS and take the
mean among the tracks to generate the mix which is then the equal loudness mix of input tracks as the input to be
normalised transformed by the model.

[a] Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects, koo. et al, ICASSP 2023



Objective Evaluation

Method RMS| CF| SW| SI| BS| AFLoss/|
Equal Loudness 3.11 051 3.16 021 333 33.389
MST [16] 3.15 045 464 013 0.09 0.185
Diff-MST

MRSTFT-8 3.63 144 197 429 0.17 0.379
MRSTFT-16 3.40 098 191 199 0.19 0.328
MRSTFT+AF-8  3.12 086 129 076 0.13 0.237
MRSTFT+AF-16 3.15 043 0.89 220 0.11 0.186
AF-16 2.39 007 160 097 0.13 0.168
Human 1 3.02 026 205 046 0.17 0.218
Human 2 3.21 0.14 363 229 0.11 0.180

Table 1. Average of metrics computed across the same
section of three songs from three different genres. RMS
is reported in e-04, CF in e-01, SW in e-02, and SI in e-
02. We have provided audio examples as supplementary

material.

Method RMS| CF| SW| SI| BS| AFless| FAD |
Equal Loudness 2.31e-04 2.11 6.03 1.41 32.7 6.55e+00 17.6
MST [16] 4.07e-04 1.72 5.84 0.89 0.31 7.85e-02 17.9
Diff-MST

MRSTFT-8 3.08e+06 391 4.55 3.38 7.06 6.15e+05 51.3
MRSTFT-16 2.23e+03 4.07 5.00 197 1.81 4.47e+02 65.9
MRSTFT+AF-8  2.00e+05 1.79 4.58 2.86 6.89 4.00e+04 48.3
MRSTFT+AF-16 2.46e+00 1.14 4.29 3.44 0.92 6.92e-01 51.1
AF-16 4.24e-04 0.67 478 0.22 0.11 3.26e-02 15.1

Table 2. Average of metrics using unseen tracks from
Cambridge dataset and mixes from MUSDB18 [25]. CF
in e-02, SW in e-02, SI in e-02.

*-8 and *-16 are trained on maximum 8 and 16 tracks, respectively



Conclusions

e Improved metrics observed with training on more tracks.
e AF loss outperforms MRSTFT loss, especially in enhancing spatialization and dynamics.
o Diff-MST-MRSTFT models underperform due to unrealistic training data; fine-tuning with AF
loss improves results
e Training on real-world songs enhances performance, emphasizing the need for high-quality data.



Limitations

Challenges with increased input tracks and lack of a reverb module.

Decline in performance for longer songs due to sparse embeddings.

Human mixes capture creative elements that our system metrics may not fully assess.

FAD metric may miss nuances like frequency masking and balance.

System struggles with fully modeling mixing context but uses a reference input as a proxy.
Currently limited to static mixing configurations, unlike the dynamic adjustments in real-world
mixing.

No subjective evaluation :/



Model

Wave-U-Net for
drum mixing

Mixing with neural
mixing console

Mixing with
out-of-domain
data
Mixing style

transfer

Diff-MST

System Type

Direct
transformation

Parameter
estimation

Direct

transformation

Direct
transformation

Parameter
estimation

Summary

Controllability Context

No No

Yes No

No No

No Yes
(reference

song)

Yes Yes

(reference

song)

Interpretability

No

Yes

No

Yes

Yes

Input Taxonomy
Drums only
Multitrack, permutation and
number of tracks invariant
Wet stems, limited on number of

tracks

Mix and style reference mix

Raw tracks and style reference
mix
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User-Centric Design



User of the tools

Advanced

Skill Level

Beginner

Amateur

Pro-am

Professional

Having fun

End Goal

>
Making money

(not accurate but gives a sense of
where each category of user fits)



Amateurs

(52
Q)
Limited knowledge of music mixing ~

Mixing: biggest hurdle to releasing music

e Expectations: highly autonomous mixing system

e Not expecting high quality output

e Using Al mixing systems: produce a decent mix with
minimal effort

e Positively embracing the emerging technology




Pro-Ams

e Use cases:
o Improve their skills and work towards becoming
professionals
o quickly achieve a certain sound or style in their mixes.
e Aware of the limitations of technology - willing to put tools
to best use.
e Cautiously optimistic about the future of these tools.

Higher technical skills than amateurs
but less experience than
professionals.



Professionals [Positive]

save time on repetitive tasks Accurate and precise

experiment with new sounds customizable

I tasks like filtering, peak detection,

pitch detection, mastering,

u‘ equalization, and sound
enhancement

assistive and co-creative
technologies that enable
collaboration

Use Case Expectations



Professionals [Negative]

Cannot fully replace the
human touch and creativity

Traditional methods of mixing are
required in the process.

superior - learning by trial and error
best way to master mixing.

54%

Leads to a loss of control and
precision in the final product

L_ Yes
Sometimes / 14%

32%

Fig. 2: Responses to the use of Al-powered tools in

mixing workflow as reported by pro-ams and
pros.



Smart Amateurs Pro-ams Professionals
tools\User
Create decent mix Learning and exploratory | Automate repetitive and time-
tool consuming tasks
Use-case As a learning tool To find a starting point Co-creation and assistance
Automate technical tasks To find a starting point/direction
for mix
Creativity and inspiration Creativity and inspiration
Autonomous with less | Advanced and more control | Highly advanced and wide range
control of control option
Expectations Cost-effective Accurate and precise Accurate and precise
Easy to use Assistive Assistive
Cost effective Easy integration in current work-
flow
Easy integration into current | Context-aware
workflow
Sentiment Positive Cautiously positive Mixed

Table 1: Comparison of use-case, expectations, and sentiment amongst different categories of users of Al technol-

ogy in mixing workflows




Seamless Integration

Amateurs: may not be familiar or well-versed with DAW

e Autonomous mixing tools hosted on web
e Tools with simpler interface and less options to control

Pro-ams: may have established workflows but are open and curious to try new tech

e Web-based interfaces or tools that are simple to use
e Tools that will integrate into their workflow

Professionals: established workflows and familiar tools

e Should integrate into their existing workflow
e build tools that have similar formats and configurations to what these users
are familiar with




Output
Precise with no
artifacts and in line
with the context

Context

using text, audio,——__
semantics etc

User Interface
Allowing a way to
interpret results and

User Interface
Allowing a way to
provide context and

control the result tweak them
Input Output
Tool Format
Seamlessly
integrating into
workflow

Ideal design for an automatic mixing system




Given a music mixture and its multitrack
recordings, can we reverse-engineer the
Fx graph?



Reverse Engineering (2021, 2024)



Reverse engineering of a mix

I Stem 1 II Stem 2 Ioool Stem K I

J A SA ARTICLE Q== ?nT

‘ oo0o0

Reverse engineering of a recording mix with differentiable :
digital signal processing®

Joseph T. Colonel® and Joshua Reiss
Centre for Digital Music, Queen Mary University of London. London, United Kingdom

I Panning I

ABSTRACT:

A method to retrieve the parameters used to create a multitrack mix using only raw tracks and the stereo mixdown is
presented. This method is able to model linear time-invariant effects such as gain, pan, equalisation, delay, and
reverb. Nonlinear effects, such as distortion and compression, are not considered in this work. The optimization pro-
cedure used is the stochastic gradient descent with the aid of differentiable digital signal processing modules. This
method allows for a fully interpretable representation of the mixing signal chain by explicitly modelling the audio
effects rather than using differentiable blackbox modules. Two reverb module architectures are proposed, a “stereo Y
reverb” model and an “individual reverb™ model. and each is discussed. Objective feature measures are taken of the 3
outputs of the two architectures when tasked with estimating a target mix and compared against a stereo gain mix

baseline. A listening study is performed to measure how closely the two architectures can perceptually match a refer-

ence mix when compared to a stereo gain mix. Results show that the stereo reverb model performs best on objective

measures and there is no statistically significant difference between the participants’ perception of the stereo reverb

model and reference mixes. © 2021 Acoustical Society of America. hitps://doi.org/10.1121/10.0005622 | ‘Output Mix |
(Received 1 February 2021; revised 24 May 2021: accepted 24 June 2021: published online 27 July 2021) (Laft Ghanns)) (Right Channel)
Editor: Peter Gerstoft Pages: 608-619
L ] = " MSS Loss ii
Reverse engineering of a recording mix with differentiable digital signal processing, Colonel et al. (JASA, July 2021) Target Mix Target Mix
Left Channel)) Right Channel

FIG. 1. (Color online) The mixing chain diagram for the “stereo bus”
architecture.

>}>




Searching for Mixing Graphs: A Pruning Approach

Proceedings of the 27" International Conference on Digital Audio Effects (DAFx24), Guildford, United Kingdom, 3 - 7 September 2024

SEARCHING FOR MUSIC MIXING GRAPHS: A PRUNING APPROACH

Sungho Lee'* , Marco A. Martinez-Ramirez*, Wei-Hsiang Liao®, Stefan Uhlich®, Giorgio Fabbro®, Kyogu Lee', and Yuki Mitsufuji’

' Department of Intelligence and Information, Seoul National University, Seoul, South Korea
“Sony Al, Tokyo, Japan  *Sony Europe B.V., Stuttgart, Germany ’Sony Group Corporation, Tokyo, Japan

ABSTRACT G.P

Music mixing is compositional — experts combine multiple audio
processors to achieve a cohesive mix from dry source tracks. We
propose a method to reverse engineer this process from the input
and output audio. First, we create a mixing console that applies all
available processors to every chain. Then, after the initial console
parameter optimization, we alternate between removing redundant
processors and fine-tuning. We achieve this through differentiable
implementation of both processors and pruning. Consequently, we
find a sparse mixing graph that achieves nearly identical matching
quality of the full mixing console. We apply this procedure to dry-
mix pairs from various datasets and collect graphs that also can be
used to train neural networks for music mixing applications. [J Console parameters [J Pruning search with parameters
[J Audio searchspace [ Tolerance threshold range

—> Parameter optimization ~~% Pruning

1. INTRODUCTION Figure 1: Music mixing graph search via iterative pruning.

Searching for Mixing Graphs: A Pruning Approach, Lee et al. (DAFx24, Sep 2024)



Searching for Mixing Graphs: A Pruning Approach

i HeHcHMHsHoHdH ]

mHeHcHMHsHoHdHT]
i HeHcHnMHsHoHdH ]
i HeHeHnHsHoHdHT] o]
i HeHeHnHsHoHdH rHpimHeHcHnHsHoHdH ]
i HeHcHMHsHoHdHT]

(a) Full mixing console (before pruning) (b) Pruned graph



Searching for Mixing Graphs: A Pruning Approach

-> To assist engineers in music production applications

-> To collect graphs that can be used to train music Al
models

-> To make black-box models interpretable



GRAFX: An Open-Source Library for Audio Processing

Graphs in Pytorch
3%4\?“7

pip install grafx
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GRAFX: An Open-Source Library for Audio Processing Graphs in Pytorch, Lee et al. (DAFx24, Sep 2024)



GRAFX: An Open-Source Library for Audio Processing
Graphs in Pytorch

GRAFX

Documentation GRAFX

&\ oy GRaFx is an open-source library designed for handling audio processing graphs in pyTorch. One can
create and modify a graph, convert it to tensor representations, and process output audio efficiently in
GPU with batched node processing. The library is rted with various di audio
INTRODUCTION h s :
. processors, which enables end d of processor or their estimators (e,
Audio Processing Graphs graph neural networks) via gradient descent. The code can be found in this repository.
|
Differentiable Processors

Batched Audio Processing Installation
GRAPH API pip install grafx
grafi.data
oip install grafx e Some processors use convolutions; for their efficient processing, install F1ashfrTcony from the following

github repository.
grafx.draw

grafx.processors stereo

grafx.utils
Contents
EROCRSSORAM INTRODUCTION
(00 00 00 00 00 00 00 00 00 0 (1[0 07 07 00 07 07 07 07 01 0
grafx.processors.eq o Audio Processing Graphs
[e] [e] [e] [c] | [<] [e] [e] (] (o] [e] [e] <] [ [ [e] [ « Differentiable Processors
4] [r] (9] [r] i

o Batched Audio Processing
graf.processors.dynamics
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GRAPH API
- grafx.processors.reverb o grafxdata
'n grafx.processors.delay e grafx.render

o grafx.draw

grafx.processors.containers
o grafxutils

.y,
N
-y
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X
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GRAFX: An Open-Source Library for Audio Processing Graphs in Pytorch, Lee et al. (DAFx24, Sep 2024)




Part-4
Evaluation



Evaluation

Music mixing is inherently a creative process and
therefore a highly subjective task

It cannot be categorized as correct or incorrect
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Evaluation

There is not a single metric that will fully encompass
the production quality of a generated mix

The use of a professional mix as the ground truth can
be an indicator of performance

However, a mix that deviates from the ground truth is
not always an aesthetically unpleasant or “bad” mix.
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Objective Metrics

Objective evaluation of music production tasks remains an open field of research

Audio features, loss function or deep learning embeddings to fully represent solely
the mixing processing

Also, we can use audio features related to mixing audio effects as a way to
numerically approximate the evaluation of mixes
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Objective Metrics

- Objective evaluation of music production tasks remains an open field of research

- No audio feature, loss function or deep learning embedding have yet
been found that fully represent solely the mixing processing

- We can use audio features related to mixing audio effects as a way to numerically
approximate the evaluation of mixes

Shortcomings
- Cannot capture production quality or aesthetic improvements
- Cannot evidence artifacts within the mix

- lll-posed problem; deviating from the ground truth does not always mean the mix is
incorrect

138



Audio Features

Spectral features
- EQ and reverberation
- Spectral centroid, bandwidth, contrast, flatness, and roll-off

Spatialisation features
- Panning
- Panning Root Mean Square (RMS)

Dynamic features
- DRC
- RMS level, dynamic spread and crest factor

Loudness features
- The integrated loudness level (LUFS) and peak loudness
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Listening Test

Perceptual listening tests have become the
conventional way to evaluate these systems

There is no standardized test type or platform
We can design tests based on a set of best practices

Adjust them to the specific characteristics of the
automatic mixing system
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Platforms for multi-stimuli tests

Platform
Web Audio Evaluation Tool

(Jillings et al., 2015)

webMUSHRA
(Schoeffler et al., 2018)

goListen
(Barry et al., 2021b)

Multi-stimuli test

-MUSHRA

-APE

-Discrete

-Reference is optional

-MUSHRA

-MUSHRA
-Reference is optional

Features

-Training stage
-Loudness normalization
-Synchronized playback
-Randomization

-Training stage
-Fade-in/out
-Synchronized playback
-Randomization

-Synchronized playback
-Randomization

Usage

-Requires server

-PHP support has not been
updated

-Customization with effort

-Requires server
-Customization with effort

-Requires account

-Does not require server
-Customization with effort
-Ease-of-use
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Listening Test

Several design decisions must be taken into account
- Type of test
- Number of stimuli
- Duration of the stimuli
- Criteria to be rated
- Requirements for the participants

- Listening environment
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©® ©® DeepLeaming for Automatic | X+
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Deep Learning for Automatic Mixing Mothvton

About the authors
Software
Citing this book
Note

Deep Learning for

Automatic Mixing

Search this book This is a web book written for a tutorial session of the 23rd International Society for Music
Information Retrieval Conference, Dec 4-8, 2022 held at Bengalur, India in hybrid
format. The ISMIR conference is the world's leading research forum on processing,

Deep Learning for Automatic Mixing
searching, organising and accessing music-related data.

AUDIO ENGINEERING

Audio Effects

Overview

Music Production v

AUTOMATIC MIXING Mixing is a central task within audio post-pi where expert is required

to deliver professional quality content, encompassing both technical and creative
inteligent Music Production

oroslom Formutat considerations. Recently, deep learning approaches have been introduced that aim to
roblem Formlation

address this challenge by generating a cohesive mixture of a set of recordings as would
an audio engineer. These approaches leverage large-scale datasets and therefore have

the potential to outperform traditional approaches based on expert systems, but bring

Methods v
Loss Functions

Differentiable sigrial processing their own unique set of challenges. In this tutorial, we will begin by providing an

IMPLEMENTATION introduction to the mixing process from the perspective of an audio engineer, along with a
discussion of the tools used in the process from a signal processing perspective.

inference
Datasets We will then discuss a series of recent deep learning approaches and relevant datasets,
Models providing code to build, train, and evaluate these systems. Future directions and
Training challenges will be discussed, including new deep learning systems, evaluation methods,
and approaches to address dataset availability. Our goal is to provide a starting point for
EVALUATION
researchers working in MIR who have little to no experience in audio engineering so they
Metles can easily begin addressing problems in this domain. In addition, our tutorial may be of
coNCLUSION interest to researchers outside of MIR, but with a background in audio engineering or

signal processing, who are interested in gaining exposure to current approaches in deep
learning.

Future Directions
Conclusions

References

https://dl4am.qithub.io/tutorial Motivation

Music mixing is a crucial task within audio p where expert is

required to deliver professional music content []. This task encompasses both technical
and creative in the process of combining individual sources into a mixture,

often involving the use of audio processors such as equalization, dynamic range
, panning, and IMS20].
Due to this complexity, the field of intelligent music production (IMP) [SRDM19] has

focused on the design of systems that automate tasks in audio engineering. These
Powered by Jupyter Book

systems aim to lower the difficulty in creating productions by novice users, as well as
expedite or extend the workflow for professionals [MS19b].
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Implementation
Part 5



You can save your results and come
back later if you click “Copy to Drive”

() O1_inference.ipynb

(
File Edit View Insert Runtime Tool elp
— + Code + Text # Copy to Drive
(0}
~ Inference
{x}

In this notebook we will demonstrate how to use two pretrained models to generate multitrack mixes of drum recordings. We provide models
(] trained on the ENST-drums dataset, which features a few hundred drums multitracks and mixes of these multitracks made by professional
audio engineers. We train two different multitrack mixing model architectures: the Differentiable Mixing Console (DMC), and the MixWaveUNet.
First we will download the model checkpoints and some test audio, then load up the models and the audio tracks and generate a mix that we
can listen to.

Note: This notebook assumes that you have already installed the automix package. If you have not done so, you can run the following:
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In this notebook we will demonstrate how to use two p ined models to g multi mixes of
(] drum recordings. We provide models trained on the ENST-drums dataset, which features a few hundred

drums multitracks and mixes of these multitracks made by professional audio engineers. We train two
different multitrack mixing model architectures: the Differentiable Mixing Console (DMC), and the
MixWaveUNet. First we will download the model checkpoints and some test audio, then load up the
models and the audio tracks and generate a mix that we can listen to.

Note: This notebook assumes that you have already installed the automix package. If you have not done
s0, you can run the following:

[ ] tpip install git+https://github.com/csteinmetzl/automix-toolkit

3.
~

import os
import glob
import torch
import torchaudio
import numpy as np

import IPython

import IPython.display as ipd
import matplotlib.pyplot as plt
import librosa.display

smatplotlib inline
%load_ext autoreload
sautoreload 2

from automix.system import System

~ Download the pretrained models and multitracks

Jjupyter

First we will download two different pretrained models. Then we will also download a .zip file containing

X
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In this notebook, we will first discuss the datasets used to train the automix systems. Thereafter, we will
[} see how to pre-process the data and set up the dataloaders for training the deep learning models for
these systems.
Training automix models requires paired multitrack stems and their corresponding mixdowns. Below
listed are the desired properties for these datasets:
1. Time alligned stems and mixes : We require time-alligned stems and mixes to allow the models to
learn timewise transformation relationships.
2. Diverse instrument categories : The more diverse the number of instruments in the dataset, the
more likely is the trained system to perform well with real-world songs.

w

. Diverse genres of songs : The mixing practices vary slightly from one genre to another. Hence, if the
dataset has multitrack mixes from different genres, the trained system will be exposed to more
diverse distribution of data.

IS

. Dry multitrack stems : Mixing involves processing the recorded dry stems for corrective and
aesthetic reasons before summing them to form a cohesive mixture. For a model to learn the correct
way to process the stems to generate mixes, we need to train it on dry unprocessed stems and mix
pairs. However, more recently approaches to use processed stems from datasets like MUSEDB to
train automix systems have been explored. These approaches use a pre-processing effect
normalisation method to deal with pre-processed wet stems. For the scope of this tutorial, we do not
discuss these methods. However, we recommend having a look at this paper being presented at
ISMIR 2022.

Here we list the datasets available for training automix systems.

< Dataset Size(Hrs) no. of Songs no. of Instrument Category no. of tracks Type Usage Permissions

MedleyDB 72 122 82 126 Multitrack, Wav  Open 44

=

ENST Drums 125 - 1 8 Drums, Wav/AVl  Limited 44,

[>_] Cambridge Multitrack >3 >50 >5 570 Multitrack, Wav  open 44,

| Waiting for clients6.google.com...

Datasets

Link
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In this notebook we will dig into how the two automatic mixing models we discussed can be implemented
(] in PyTorch. As usual, we will assume you have already installed the automix package from automix-
toolkit. If not you can do it with the following command:

ipip install git+https://github.com/csteinmetzl/automix-toolkit

import os

import torch

import numpy as np

from automix.utils import count_parameters

~ MixWaveUNet

First, we will take a look at the Mix-Wave-U-Net. Recall that this model is based on Wave-U-Net a time
domain audio source separation model that is itself based on the famous U-Net architecture.

The overall architecture for the network is comprised of two types of blocks: the Downsampling blocks
(shown on the left) and the Upsampling blocks (shown on the right). In the network we apply a certain
number of these blocks, downsampling and then upsampling the signal at different temporal resolutions.
Unique to U-Net like architectuers is the characteratistic skip connections that carry information from the
each level in the downsampling branch to the respective branch in the upsampling brach.

Convid

. @)

Jjupyter

m | convid LeakyReLU
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In this notebook we will go through the basic process of training a an automatic mixing model. This will

involve combining a dataset with a model and an appropriate training loop. For this demonstration we will
PyTorch Lightning to faciliate the training.

Dataset

For this demonstration we will use the subset of the DSD100 dataset. This is a music source separation
data, but we will use it to demonstrate how you can train a model. This is a very small subset of the
dataset so it can easily be downloaded and we should not expect that our model will perform very well
after training.

This notebook can be used as a starting point for example by swapping out the dataset for a different
dataset such as ENST-drums or MedleyDB after they have been downloaded. Since they are quite large, we
will focus only on this small dataset for demonstration purposes.

GPU

This notebook supports training with the GPU. You can achieve this by setting the Runtime to GPU in
Colab using the menu bar at the top.

Learn More

If you want to train these models on your own server and have much more control beyond this demo we
encourage you to take a look at the training recipes we provide in the automix-toolkit repository.

But, let's get started by installing the automix-toolkit.

[ ] !pip install git+https://github.com/csteinmetzl/automix-toolkit

[ ] import os
import torch
import pytorch lightning as pl

Training

Jjupyter
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~ Evaluation

In this notebook we will demonstrate how to evaluate a set of generated mixes via objective metrics.

We will use the mixes generated from the inference notebook, and we will objectively compare those

mixes to the human-made groudn truth mixes.

The objective evaluation of mixes can be carried out through audio features that relate to the most
common audio effects used during mixing. Since audio effects generally manipulate audio characteristics
such as frequency content, dynamics, spatialization, timbre, or pitch, we can use audio features that are
associated with these audio characteristics as a way to numerically evaluate mixes.

We can use the following audio features:
-Spectral features for EQ and reverberation: centroid, bandwidth, contrast, flatness, and roll-off
-Spatialisation features for panning: the Panning Root Mean Square (RMS)

-Dynamic features for dynamic range processors: RMS level, dynamic spread and crest factor

features: the ir d loudness level (LUFS) and peak loudness

To capture the dynamics of audio effects information we can compute the running mean over a fixed
number of past frames. We can calculate the mean absolute percentage error (MAPE) between the target
and output features to get a better understanding of the overall relative error.

Note: This notebook assumes that you have already installed the automix package.

[ ] !pip install git+https://github.com/csteinmetzl/automix-toolkit

[ 1 import os
import glob
import torchaudio
import numpy as np

import IPython
import IPython.display as ipd
import matplotlib.pyplot as plt

Jjupyter
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Future Directions
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Generative models

Mixes

The mixing task is a one to many mapping...

So we should treat it as such. Go beyond supervised learning? o



Further Interests

Learn a latent space of audio production representation
- This will allow us to learn a global sound of the mix

- Easily explore mixing space for quick iteration for user
Better objective evaluation methods for models; what is a good mix afterall?

A loss function that better captures mixing practices. Embedding loss?
More ways to incorporate context.

Dataset Model Loss
Architecture function
Subjective Obijective

Evaluation




Last thoughts

- Static mixes and static chains -> learned chains and automation

- Black box - exploration of generative methods

- White box - more context, learned effect chains

- Audio quality closer to human engineers work

- Work with larger number of tracks - as in real world practice

- Apt evaluation techniques (objective and subjective)

- Systems learning long term coherence across more tracks and longer
durations

- Mixing anomaly detection

- Expansion of mixing to film audio, broadcasting, game audio (principles for
mixing varies)



Key Factors for Success of Smart Mixing tools

e Interaction models that facilitate trust
o lack of interpretability and control - barrier to their adoption.

e High precision and quality of results generated
o low-quality output not useful in professional workflows.

e Seamless integration into existing workflows
o maximize efficiency and productivity.

Towards a Human Centric Design Framework for Al Assisted Music Production
Tsiros, A. and Palladini, A. NIME 2020



H 0D~

Takeaways

Mixing is a task that maps creative ideas and emotion to technical parameters
Approaches are often either direct transformation or parameter estimation
Evaluation remains challenging and we rely on well design listening tests

Many open questions and challenges with potentially fruitful outcomes
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Mixes

Please rate each mix based on your overall preference

100 100 100 100 100 100
80 80 80 80 80 80
60 60 60 60 60 60
40 40 40 40 40 40
20 20 20 20 20 20
®0 @0 @0 @0 @0 ®0
> 1 > 2 > 3 > 4 » 5 > 6
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1.

Mixes

(Koo et al., 2022a) - Music Mixing Style Transfer with reference from MUSDB18
(same genre)

Mono mix
Gary Bromham - Professional audio engineer mix

(Steinmetz et al., 2021) - DMC mix trained with MedleyDB - Gain and Panning

(Martinez-Ramirez et al., 2022) - Fx Normalization

RoEX
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https://jhtonykoo.github.io/MixingStyleTransfer/
https://arxiv.org/abs/2010.10291
https://marco-martinez-sony.github.io/FxNorm-automix/
https://www.roexaudio.com/

“//ﬁ

Resources




©08  © ouoteamagrcnnomates x 4

© cssmettitonic ook 1 x| =
€ 5 C O Fle srsisteCodeutoralbookl_bulgmiianding-page i

= D0 &

€ 5 C 8 gincomsenmantauon

Deep Learning for Automatic Mixing

-toolkit

 csteinmetz1 /autom Cumn 2 - Yrkd < | foswm |-

©Code @ lssues 1) Pulmausts © Actons [ Pojees [ WK O Secuy L2 s @ Setngs

Poman - Pabanches ©0tos cototie  naae- ([EENEEIRM) Avowt

Your main branch isn't protected earch this book This is 2 web book written for a tutorial

Deep Learning for
Automatic Mixing

ession of the

i hybrid

@ so-soum verge st recuest 5 rom cstenmer

Jr— asang o
contes wiated
aocsassts addng 0
noabooks wisted ould
o ring
D oo [R— p— suiha
B ucense p— PE—
[ READMEmd adding updates to READMS 3 days ago Packages atasets,
D e PP — yostorany | pogiase il ey 2 iy e i
and approaches ou
= o 7 f— - ; .
Contrbutors 3 s
can easly beg pro In adeiton,our o
. signal pracessing, who o
S marco-marcinez-sony nphecty learning
automix-toolkit _
Motivation
- Eniogs @ a ‘audio post-productior
& github-pages ( Aciive. required to: - This task nical
Setup in the process of dure,

often nvolving the use of audio processors such as

walization, dynarmic range

Langonges, ompression, panning, and reverberation[ WIS

o :
B ——— Due o thiscomplexty the feld of nteligent music production (MP) [SRONTS] has
pip install —upgrade pio o dmpn—on focused on the design o systems that automatetasks n audo engineering, These
o o B 3B systems s to lower th difcuty n creating productions by novice users, as well s
a3t clone et //github. com/csteinmetzl/automix-tootkit. it RIS O SR oo ke i (516
G .t H b

Questions




00 O cstnmetzyautomictoolit i X |+ .

s C @ github.com/csteinmetz1/automix-toolkit Hh % € Ho@ % H»OE :
O Search or jump to... Pull requests Issues Codespaces Marketplace Explore
[ ] [ ] B csteinmetz1/ automix-toolkit ' Public @uUnwatch 2 > %P Fork 1~ ¥ Star 25~
-
<> Code ( Issues I Pullrequests () Actions [ Projects [0 wiki @ Security |~ Insights @ Settings
# main ~  }* 4branches © 0tags Gotofile Add file ~ <> Code~ [EELUEIS B

Models and datasets for training deep
Your main branch isn't protected learning automatic mixing models
Protect this branch from force pushing, deletion, or require status checks before merging. Learn more

Protect this branch  x
@ dldam.github.ioftutorial

audio music  deep-learning

10

@ sai-soum Merge pull request #9 from csteinmetzl/soum - + faeas2c 8hoursago O 74 commits
automatic-mixing
automix Merge pull request #8 from csteinmetz1/manr yesterday ReaETe
checkpoints adding checkpoint directory with readme 17 days ago &5 Apache-2.0 license
configs updated model configurations 2daysage W 25stars
@ 2 watching
docs/assets adding new figures 3 days ago
¥ 1fork
notebooks updated dataset notebooks 8 hours ago
scripts evaluation notebook, script 2 days ago
Releases
tests adding DSD datalaoder 17 days ago
No releases published
[ .gitignore ignore more files 2 days ago Create a new release
[ LICENSE Initial commit 3 months ago
Packages
[ README.md adding updates to README 3 days ago g
No packages published
O setup.py Merge pull request #8 from csteinmetz1/mamr yesterday Publish your first package

= README.md 4

https://github.com/csteinmetz1/automix-toolkit convibutors 5

g csteinmetz1 Christian J. Steinmetz

Inl marco-martinez-sony

8 soi-soum soumya sai varka

¥ Star Star it on GitHub automix-toolkit

Models and datasets for training deep learning automatic mixing models Environments 1

% github-pages ( Active

Setup

Languages
python -m venv env
source env/bin/activate
pip install —-upgrade pip
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AUDIO ENGINEERING

Audio Effects

Overview

Music Production v

AUTOMATIC MIXING Mixing is a central task within audio post-pi where expert is required

to deliver professional quality content, encompassing both technical and creative
inteligent Music Production

oroslom Formutat considerations. Recently, deep learning approaches have been introduced that aim to
roblem Formlation

address this challenge by generating a cohesive mixture of a set of recordings as would
an audio engineer. These approaches leverage large-scale datasets and therefore have

the potential to outperform traditional approaches based on expert systems, but bring

Methods v
Loss Functions

Differentiable sigrial processing their own unique set of challenges. In this tutorial, we will begin by providing an

IMPLEMENTATION introduction to the mixing process from the perspective of an audio engineer, along with a
discussion of the tools used in the process from a signal processing perspective.

inference
Datasets We will then discuss a series of recent deep learning approaches and relevant datasets,
Models providing code to build, train, and evaluate these systems. Future directions and
Training challenges will be discussed, including new deep learning systems, evaluation methods,
and approaches to address dataset availability. Our goal is to provide a starting point for
EVALUATION
researchers working in MIR who have little to no experience in audio engineering so they
Metles can easily begin addressing problems in this domain. In addition, our tutorial may be of
coNCLUSION interest to researchers outside of MIR, but with a background in audio engineering or

signal processing, who are interested in gaining exposure to current approaches in deep
learning.

Future Directions
Conclusions
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Music mixing is a crucial task within audio p where expert is

required to deliver professional music content []. This task encompasses both technical
and creative in the process of combining individual sources into a mixture,

often involving the use of audio processors such as equalization, dynamic range
, panning, and IMS20].
Due to this complexity, the field of intelligent music production (IMP) [SRDM19] has

focused on the design of systems that automate tasks in audio engineering. These
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systems aim to lower the difficulty in creating productions by novice users, as well as
expedite or extend the workflow for professionals [MS19b].
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