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ABSTRACT1

Mixing style transfer automates the generation of a multi-2

track mix for a given set of tracks by inferring production3

attributes from a reference song. However, existing sys-4

tems for mixing style transfer are limited in that they often5

operate only on a fixed number of tracks, introduce arti-6

facts, and produce mixes in an end-to-end fashion, with-7

out grounding in traditional audio effects, prohibiting in-8

terpretability and controllability. To overcome these chal-9

lenges, we introduce Diff-MST, a framework comprising a10

differentiable mixing console, a transformer controller, and11

an audio production style loss function. By inputting raw12

tracks and a reference song, our model estimates control13

parameters for audio effects within a differentiable mix-14

ing console, producing high-quality mixes and enabling15

post-hoc adjustments. Moreover, our architecture sup-16

ports an arbitrary number of input tracks without source la-17

belling, enabling real-world applications. We evaluate our18

model’s performance against robust baselines and show-19

case the effectiveness of our approach, architectural de-20

sign, tailored audio production style loss, and innovative21

training methodology for the given task. We provide code,22

pre-trained models, and listening examples online.23

1. INTRODUCTION24

Music mixing involves technical and creative decisions25

that shape the emotive and sonic identity of a song [1].26

The process involves creating a cohesive mix of the given27

tracks using audio effects to achieve balance, panorama,28

and aesthetic value [2]. Given the complexity of the task,29

mastering the task of mixing often requires many years of30

practice. To address this, several solutions have been pro-31

posed to provide assistance or automation [3,4]. Automatic32

mixing systems have been designed using knowledge en-33

gineering [5, 6], machine learning, and more recently deep34

learning methods [7–11]. Automatic mixing systems can35

be further subdivided into direct transformation systems36

and parameter estimation systems, as shown in Fig. 2. Di-37

rect transformation systems operate on tracks and predict a38

mix directly, in an end-to-end fashion, with the loss calcu-39

lated between the ground truth mix and the predicted mix.40
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Figure 1. Diff-MST, a differentiable mixing style trans-
fer framework featuring a differentiable multitrack mixing
console, a transformer-based controller that estimates con-
trol parameters for this mixing console, and an audio pro-
duction style loss function that measures the similarity be-
tween the estimated mix and reference mixes.

On the other hand, parameter estimation systems take in-41

put tracks and predict control parameters for a dedicated42

mixing console. In such systems, the loss can either be43

calculated on the predicted control parameters (parame-44

ter loss) based on the availability of ground truth, or on45

the predicted audio against the ground truth mix (audio46

loss). Parameter loss, calculated on the parameters, may47

not be optimal for multiparameter signal processing blocks48

since various combinations of parameters could potentially49

produce similar outcomes. [7, 11] utilizes a deep learning-50

based direct transformation system for mixing, while [8]51

employs a parameter estimation-based deep learning ap-52

proach. However, many of these systems are constrained53

to a small number of input tracks or struggle to generalize54

effectively to real-world mixing scenarios. Furthermore,55

most of these approaches generate a mix without account-56

ing for the desired sound and emotion. Due to the sub-57

jective nature of the task, an end-to-end approach without58

user control is less desirable in professional practice [12].59
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Figure 2. Formulations for deep learning-based automatic mixing systems. (a) Direct transformation (b) Parameter es-
timation on parameter loss (c) Parameter estimation on audio loss. Here, xi for i ∈ [1, N ] are the N input tracks, fθ is
the transformation, Y and Ŷ are the ground truth and predicted mix, P and P̂ are the ground truth and predicted control
parameters and La and Lp are the audio and parameter loss respectively.

1.1 Mixing Style Transfer60

In professional practice, the audio engineer often uses ref-61

erence songs and guidelines provided by the client to make62

mixing decisions [13]. This encourages the development63

of automatic mixing systems that are aware of the intention64

of the mix engineer. In our context, mixing style transfer65

refers to mixing in the style of given reference songs [14].66

This pertains to capturing the global sound, dynamics and67

spatialisation of the reference song. Recently, deep learn-68

ing systems have been proposed for audio production style69

transfer. While some approaches have considered estimat-70

ing the control parameters for audio effects [15], they are71

so far limited to controlling only a single or small set of72

effects with a singular input. Systems for multitrack mix-73

ing [16] consider multiple tracks or a sum of tracks and op-74

erate in an end-to-end fashion, but this limits interpretabil-75

ity and controllability. In this work, we introduce a novel76

deep learning-based approach to mixing multitrack audio77

material using a reference song, which utilises a differen-78

tiable mixing console to predict parameter values for gain,79

pan, 4-band equalization, compressor, and a master bus.80

Our proposed system is differentiable, interpretable and81

controllable, and can learn the mixing style from the given82

reference song. The contributions of this work can be sum-83

marised as follows:84

1. A framework for mixing style transfer that enables85

control of audio effects mapping the production style86

from a reference onto a set of input tracks.87

2. A differentiable multitrack mixing console consist-88

ing of gain, parametric equalisation, dynamic range89

compression, stereo panning, and master bus pro-90

cessing, which enables end-to-end training.91

3. Evaluation of our approach compared to strong base-92

lines with objective metrics.93

4. We demonstrate the benefits of our system, includ-94

ing generalisation to an arbitrary number of input95

tracks, no requirement for labelling of inputs or en-96

forcement of specific taxonomies, high-fidelity pro-97

cessing without artifacts, and greater efficiency.98
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Figure 3. Differentiable Mixing console

2. METHOD99

2.1 Problem Formulation100

We can formulate the mixing style transfer task as fol-101

lows. Let T be a matrix of N mono input raw tracks102

{t1, t2, t3, . . . , tN} and Mr be the matrix of stereo refer-103

ence mix containing two channels. A shared weight en-104

coder fθr and fθt are employed to extract information from105

the reference and input tracks respectively. This informa-106

tion is then aggregated and fed into a transformer controller107

network comprising a transformer encoder and a multi-108

layer perception (MLP) gϕ. The primary task of this net-109

work is to estimate the parameter matrix P , which consists110

of N parameter vectors p, each responsible for configuring111

the chain of audio effects for a respective track in T . Sub-112

sequently, the differentiable mixing console h(T, P ) pro-113

cesses the input tracks T using the parameters P to gener-114

ate a predicted mix Mp that mirrors the style of the refer-115

ence mix Mr.116

P = gϕ(fθt(T ), fθr(Mr)) (1)
117

Mp = h(T, P ) (2)



2.2 Differentiable Mixing Style Transfer System118

We propose a differentiable mixing style transfer system119

(Diff-MST) that takes raw tracks and a reference mix as120

input and predicts mixing console parameters and a mix121

as output. As shown in Figure 1, our system employs122

two encoders, one to capture a representation of the in-123

put tracks and another to capture elements of the mixing124

style from the reference. A transformer-based controller125

network analyses representations from both encoders to126

predict the differentiable mixing console (DMC) param-127

eters. The DMC generates a mix for the input tracks using128

the predicted parameters in the style of the given reference129

song. Given that our system oversees the operations of the130

DMC rather than directly predicting the mixed audio, we131

circumvent potential artefacts that may arise from neural132

audio generation techniques [17, 18]. This also creates an133

opportunity for further fine-tuning and control by the user.134

2.3 Differentiable Mixing Console (DMC)135

The process of multitrack mixing involves applying a chain136

of audio effects, also known as a channel strip, on each137

channel of a mixing console. The audio engineer may use138

these devices to reduce masking, ensure a balance between139

the sources, and address noise or bleed. Incorporating this140

prior knowledge of signal processing in the design of our141

mixing system, we propose an interpretable and control-142

lable differentiable mixing console (DMC). Our console143

applies a chain of audio effects comprising gain, paramet-144

ric equaliser (EQ), dynamic range compressor (DRC), and145

panning to each of the tracks to produce wet tracks. The146

sum of wet tracks is then sent to a master bus on which147

we insert stereo EQ and a DRC. This produces a mastered148

mix of the given tracks. We incorporate a master bus in149

our console as it is usual to use a mastered song as a ref-150

erence in workflows. Therefore, having a master bus in151

the mixing console chain allows for easier optimisation of152

the system. To enable gradient descent and training in a153

deep learning framework, we require the mixing console154

to be differentiable. To achieve this, we use differentiable155

effects from the dasp-pytorch 1 . The pipeline of the156

DMC is presented in Figure 3.157

2.4 Spectrogram Encoder158

The encoder comprises a magnitude spectrum-based con-159

volutional network. The encoder computes spectrograms160

using short-time Fourier transform with a Hann window of161

size N = 2048 and a hop size of H = 512. The magnitude162

spectrogram passed through a convolutional network. The163

convolutional encodings are passed through a linear layer164

and return an embedding of size 512. The model features a165

separate shared-weight mix encoder fθr and track encoder166

fθt for each of the reference mix and the input tracks re-167

spectively. We treat each channel of a stereo audio as a168

separate track. Therefore, we load the stereo mix and any169

other stereo input track into separate tracks. We then pass170

T and Mr through the encoder and compute embeddings.171

1 https://github.com/csteinmetz1/dasp-pytorch/

2.5 Transformer Controller172

The controller features a transformer encoder and a shared-173

weight MLP. The transformer encoder generates style-174

aware embeddings using self-attention across the output175

of the spectrogram encoderfθr and fθt and a master bus176

embedding which is learned during training. The MLP177

predicts the control parameters corresponding to the chan-178

nel strip for each track, and the master bus embeddings are179

used to predict the master bus control parameters. A shared180

weight MLP is used to predict channel strip parameters for181

each channel. We generate the predicted mix Mp by pass-182

ing the control parameters through the DMC along with the183

tracks. This architecture enables our system to be invariant184

to the number of input tracks as shown in Figure 1.185

2.6 Audio Production Style Loss186

The style of a mix can be broadly captured using features187

that describe its dynamics, spatialisation and spectral188

attributes [13]. We propose two different losses to train189

and optimise our models.190

191

Audio Feature (AF) loss: This loss is composed of tradi-192

tional MIR audio feature transforms [19]. These T features193

include the root mean square (RMS) and crest factor (CF),194

stereo width (SW) and stereo imbalance (SI) and bark-195

spectrum (BS) corresponding to the dynamics, spatialisa-196

tion and spectral attributes respectively. We optimise our197

system by calculating the weighted average of the mean198

squared error on the audio features that minimises the dis-199

tance between Mp and Mr. We compute the audio feature200

transforms T along with the weights w as follows:201

T1(x) = RMS(x) =

√√√√ 1

N

N∑
i=1

x2
i ;w1 = 0.1 (3)

202

T2(x) = CF(x) = 20 log10

(
max(|xi|)
RMS(x)

)
;w2 = 0.001

(4)203

T3(x) = BS(x) = log(FB · |STFT(x)|+ ϵ) ;w3 = 0.1
(5)204

T4(x) = SW(x) =
1
N

∑N
i=1(xLi − xRi)

2

1
N

∑N
i=1(xLi + xRi)2

;w4 = 1.0

(6)

T5(x) = SI(x) =
1
N

∑N
i=1 x

2
Ri − 1

N

∑N
i=1 x

2
Li

1
N

∑N
i=1 x

2
Ri +

1
N

∑N
i=1 x

2
Li

;w5 = 1.0

(7)
205

where N represents the sequence length, x is the input ten-206

sor, FB is the filterbank matrix, STFT(x) represents the207

short-time Fourier transform of x, and ϵ is a small con-208

stant of value 10−8 added for numerical stability. The net209

loss is computed as follows:210

Loss(Mp,Mr) =
1

2

2∑
i=1

5∑
j=1

wj ·MSE
(
Tj(Mpi),Tj(Mri

)
(8)

https://github.com/csteinmetz1/dasp-pytorch/
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Figure 4. First training strategy from Section 3.

where wj is the weight associated with jth transform Tj211

and MSE corresponds to mean squared error.212

MRSTFT loss: The multi-resolution short-time Fourier213

transform loss [20, 21] is the sum of L1 distance between214

STFT of ground truth and estimated waveforms measured215

in both log and linear domains at multiple resolutions,216

with window sizes W ∈ [512, 2048, 8192] and hop sizes217

H = W/2. This is a full-reference metric meaning that218

the two input signals must contain the same content.219

3. EXPERIMENT DESIGN220

The task requires a dataset with multitrack audio, style221

reference, and the ground truth mix of the multitrack in the222

style of the reference for training. However, due to the lack223

of suitable datasets, we deploy a self-supervised training224

strategy to enable learning of the control of audio effects225

without labelled or paired training data. We achieve this226

by training our model under two different regimes which227

mainly vary in data generation and loss function.228

229

Method 1: We extend the data generation technique used230

in [15] to a multi-track scenario as shown in Figure 4. We231

first randomly sample a t = 10 sec segment from input232

tracks and generate a random mix of these input tracks by233

using random DMC parameters. We then split the segment234

of the randomly mixed audio and the input tracks into two235

halves, namely, MrA and MrB and TA and TB of t/2236

secs each, respectively. The model is input with TB as237

input tracks and MrA as the reference song. The predicted238

mix Mp is compared against MrB as the ground truth for239

backpropagation and updating of weights. Using different240

sections of the same song for input tracks and reference241

song encourages the model to focus on the mixing style242

while being content-invariant. This method allows the use243

of MRSTFT loss for optimisation as we have the ground244

truth available. The predicted mix is loudness normalised245

to -16.0 dBFS before computing the loss.246

247

Method 2: We sample a random number of input tracks248

between 4-16 for song A from a multitrack dataset and use249

a pre-mixed real-world mix of song B from a dataset con-250

sisting of full songs as the reference. We train the model251

using AF loss mentioned in Section 2.6 computed between252

Mp and Mr. This method also allows us to train the model253

without the availability of a ground truth. Unlike Method254

1, this approach exposes the system to training examples255

more similar to real-world scenarios where the input tracks256

and the reference song come from a different song. How-257

ever, due to the sampling, some input track and reference258

song combinations may not be realistic.259

3.1 Datasets260

Multitrack: For both training methods, we utilise mul-261

titrack from MedleyDB [22, 23] and Cambridge.mt 2262

which contains a total of 196 and 535 songs respectively,263

sampled at fs = 44100 Hz. For both datasets, we gen-264

erate a train/test/validation split of 80/20/20. During265

training, songs are picked at random from the training266

split of both datasets. Thereafter, we randomly sample267

a section of the song as input tracks. We find a random268

offset for sampling multitrack by finding a section of269

the mix x[i] that has mean energy above the threshold,270

1
N

∑N
i=1 |x[i]|2 ≥ 0.001. During training, each channel271

corresponding to a stereo raw track is treated as a separate272

mono track. We check the mean energy of each track to273

avoid loading silent tracks. All input tracks are loudness274

normalised to -48.0 dBFS.275

276

Reference Songs: For Method 1 we generate a random277

mix using random parameters and input tracks as men-278

tioned in Section 3 and loudness normalise the random mix279

to -16 dBFS. For Method 2, we use real-world songs from280

MTG-Jamendo which contains more than 55k songs songs281

in MP3 format [24]. We pick a random segment y[i] of282

a random song from the dataset as a reference and check283

for mean energy above the threshold, 1
N

∑N
i=1 |xy[i]|2 ≥284

0.001. We loudness normalise the reference to -16 dbFS285

and load stereo information on separate channels.286

3.2 Training Details287

Our model contains 190 M trainable parameters, 76.5M288

corresponding to the track and mix encoder, and 37.9 M289

for the transformer controller. We train five variations of290

our model differing in the number of tracks, methodology291

and loss function used. To remedy the bottleneck of292

reading multitrack audio data from disk, we load data into293

RAM every epoch from both the training and validation294

sets respectively. The number of training steps per epoch295

is comprised of passing over these examples 20 times296

for training and 4 times for validation, sampling random297

examples at each step. This provides a tradeoff between298

training speed and data diversity. We train all our models299

with a batch size of 2 a learning rate of 10−5 with the300

Adam optimiser. We accumulate gradients over 4 batches301

and use pytorch for training.302

303

2 https://cambridge-mt.com/

https://cambridge-mt.com/


Diff-MST-MRSTFT: We generate data using the method304

1 described in Section 3 and calculate MRSTFT loss305

for weight update and backpropogation. We train two306

variations of the model with a maximum of 8 tracks and307

16 tracks as input, each for 1.16 M steps.308

309

Diff-MST-MRSTFT+AF: We fine-tune both versions of310

the pre-trained Diff-MST-MRSTFT using the synthetically311

generated data of method 1 in Section 3 with AF loss312

described in Section 2.6 for 20k steps.313

314

Diff-MST-AF: This method uses real-world songs as a ref-315

erence for training. We train this model for 1.16 M steps316

using the AF loss described in Section 2.6. We train with a317

varying number of tracks with an upper limit of 16.318

3.3 Baselines319

We compare the performance of our model against three320

baselines: the equal loudness mix, the mix generated321

using the pre-trained mixing style transfer model by [16],322

and two human mixes. We picked three songs from the323

Cambridge online multitrack repository belonging to324

the genres of electronic, pop, and metal for our main325

evaluation. Each of the songs contains between 12 and 22326

input tracks. We selected references from popular songs.327

328

Equal Loudness: We loudness normalise the tracks to329

-48.0 dBFS and taje the mean among the tracks to generate330

the mix which is then normalised. This generates a331

loudness-normalised sum of input tracks. We consider this332

system to be the lowest anchor as it does not consider any333

style information or mixing transformations.334

335

MST [16]: The method uses a pre-trained source separa-336

tion model to generate stems from input and reference mix337

and perform stem-to-stem style transfer using a contrastive338

learning-based pre-trained audio effect encoder. The339

stems are mixed using a TCN-based model conditioned on340

style embeddings. Since the model performs mix-to-mix341

transformation, we make use of the equal loudness mix of342

input tracks as the input to be transformed by the model.343

This allows us to extend the system to perform mixing344

style transfer for any number of input tracks. This puts345

the system at a disadvantage as it is trained to work for346

mix-to-mix scenarios where good-quality mixes are used347

as input, leading to better-quality extracted stems.348

349

Human Mixes: We asked two audio engineers with pro-350

fessional practice to mix the three songs using the corre-351

sponding references. Each of them mixed all three songs352

until the end of the first chorus.353

4. OBJECTIVE EVALUATION354

We evaluate the performance of our model against three355

baselines listed in Section 3.3. For the first evaluation,356

we compare the mixes generated by all five of our sys-357

tems described in Section 3.2 and the baselines for three358

Method RMS ↓ CF ↓ SW ↓ SI ↓ BS ↓ AF loss ↓ FAD ↓

Equal Loudness 2.31e-04 2.11 6.03 1.41 32.7 6.55e+00 17.6
MST [16] 4.07e-04 1.72 5.84 0.89 0.31 7.85e-02 17.9

Diff-MST
MRSTFT-8 3.08e+06 3.91 4.55 3.38 7.06 6.15e+05 51.3
MRSTFT-16 2.23e+03 4.07 5.00 1.97 1.81 4.47e+02 65.9
MRSTFT+AF-8 2.00e+05 1.79 4.58 2.86 6.89 4.00e+04 48.3
MRSTFT+AF-16 2.46e+00 1.14 4.29 3.44 0.92 6.92e-01 51.1
AF-16 4.24e-04 0.67 4.78 0.22 0.11 3.26e-02 15.1

Table 1. Average of metrics using unseen tracks from
Cambridge dataset and mixes from MUSDB18 [25]. CF
in e-02, SW in e-02, SI in e-02.

songs belonging to the genres of pop, electronic and metal.359

We manually picked the songs for the input tracks and the360

references for each of these cases. A 10-second section361

ranging between the middle of the first verse to the middle362

of the first chorus was used for evaluation in Table 2. We363

loudness normalise the reference mix to -16 dBFS and the364

predicted mix to -22 dBFS before predicting the metrics.365

We report the average AF loss and individual weighted au-366

dio feature transforms from Section 2.6 for all three songs.367

Our Diff-MST system trained on real-world songs as refer-368

ence using AF loss performs the best, closely followed by369

the MST [16], human engineer mix, and the mix from our370

Diff-MST-MRSTFT+AF-16 system.371

For the second evaluation, we compute average metrics372

across 100 randomly sampled examples with multitrack373

taken from the unseen set of Cambridge multitrack and374

reference songs from MUSEDB18 [25]. We compare the375

performance of our systems and the baselines MST [16]376

and the equal loudness system as shown in Table 1. We377

report individual weighted audio features from the AF378

loss along with average loss and Frèchet Audio distance379

(FAD) [26]. The FAD metric is employed to gauge the380

efficacy of music enhancement approaches or models by381

comparing the statistical properties of embeddings gener-382

ated by their output to those of embeddings generated from383

a substantial collection of clean music. In this context,384

we analyze the distributions of real-world songs against385

the mixes generated by various systems using the VGGish386

model. Again, Diff-MST-MRSTFT+AF-16 outperforms387

other approaches at capturing the dynamics, spatialisation388

and spectral attributes of the reference songs.389

5. DISCUSSION390

Overall, the results indicate the effectiveness of our ap-391

proach, architecture choice, custom audio production style392

loss, and novel training regime for the task. The reported393

metrics for both evaluations show improved performance394

when trained on a larger number of tracks. Furthermore,395

we also see that the systems trained or fine-tuned using396

AF loss generally perform better than those trained with397

MRSTFT loss, specifically in improving the spatialisation398

and dynamics of the mixes, thus showing the efficacy of399

our hand-crafted audio feature-based loss function.400

The significant difference in the Bark spectrum values be-401

tween the equal loudness and our system’s mixes suggests402



Method RMS ↓ CF ↓ SW ↓ SI ↓ BS ↓ AF Loss ↓

Equal Loudness 3.11 0.51 3.16 0.21 33.3 33.389
MST [16] 3.15 0.45 4.64 0.13 0.09 0.185

Diff-MST
MRSTFT-8 3.63 1.44 1.97 4.29 0.17 0.379
MRSTFT-16 3.40 0.98 1.91 1.99 0.19 0.328
MRSTFT+AF-8 3.12 0.86 1.29 0.76 0.13 0.237
MRSTFT+AF-16 3.15 0.43 0.89 2.20 0.11 0.186
AF-16 2.39 0.07 1.60 0.97 0.13 0.168

Human 1 3.02 0.26 2.05 0.46 0.17 0.218
Human 2 3.21 0.14 3.63 2.29 0.11 0.180

Table 2. Average of metrics computed across the same
section of three songs from three different genres. RMS is
reported in e-04, CF in e-01, SW in e-02, SI in e-02. We
have provided audio examples as supplementary material.

that mixes generated using our system have undergone403

significant spectral processing, resulting in an increased404

spectral similarity between the reference song and the pre-405

dicted mix. The metrics indicate inferior performance for406

the Diff-MST-MRSTFT-8/16 model compared to all our407

proposed models. This may be attributed to the training408

data, which is generated using random mixing console pa-409

rameters, often resulting in mixes that sound unrealistic.410

However, fine-tuning with AF loss during the last steps411

notably enhances performance. This improvement could412

be attributed to AF loss compelling the model to enhance413

dynamics and spatialization, as evidenced by the reported414

metrics. We observe a notable enhancement in perfor-415

mance through training on real-world songs, underscoring416

the significance of high-quality real-world data.417

Although the system demonstrates promising outcomes, it418

is not without its limitations. While we note higher metric419

values for certain features on the human mixes, this can be420

explained by the fact that human engineers often strive to421

capture the overall essence of the reference song. However,422

they may also incorporate creative elements leading to spa-423

tialization and dynamics that diverge significantly from the424

reference. Our metrics serve to quantify the similarity be-425

tween the reference song and the predicted mix, which is426

suitable for the task at hand but may fall short in assessing427

the creative or unconventional decisions made by human428

engineers during the mixing process. Additionally, while429

FAD indicates the predicted audio quality, it mat not cap-430

ture the intricate nuances involved in the mixing process,431

such as frequency masking and achieving balance and spa-432

tialization.433

Moreover, we noticed a decline in the system’s mixing ca-434

pabilities as the number of input tracks increased beyond435

what it was trained on. Additionally, our mixing console436

lacks a crucial reverb module essential for comprehensive437

mixing tasks. Determining the optimal method for pro-438

cessing the entire song poses a challenge, as inferring over439

the entire song length may result in overly sparse embed-440

dings. Our current system also falls short in modelling441

mixing context in all possible senses as discussed in [27].442

However, we address this challenge by incorporating a ref-443

erence input, typically selected by the mixing engineer or444

client. The reference song serves as a proxy for some of445

the contextual information that engineers typically rely on446

when making mixing decisions. Lastly, while real-world447

mixing often entails dynamic adjustments to effect param-448

eters over the course of a song, our system is presently449

constrained to static mixing configurations.450

6. CONCLUSION451

In this work, we proposed a framework for mixing style452

transfer for multitrack music using a differentiable mixing453

console. Our system is rooted in strong inductive bias, tak-454

ing inspiration from real-world mixing consoles and chan-455

nel strips and predicts control parameters for these sig-456

nal processing blocks allowing interpretability and con-457

trollability. Our system supports inputting any number458

of raw tracks, without source labelling. Furthermore, we459

circumvent possibilities for audio degradation and arti-460

facts with our design choice for a parameter estimation-461

based system. Objective evaluations demonstrate that our462

Diff-MST-MRSTFT+AF-16 system surpasses all baseline463

methods. The reported metrics give us an insight into the464

impact of architectural and training design choices. We465

show that training on a larger number of input tracks im-466

proves the performance substantially while running infer-467

ence on real-world examples that generally contain a larger468

number of input tracks. We also demonstrate the benefits469

of training on real-world quality audio examples.470

While our research has produced promising results based471

on objective metrics, it is important to acknowledge our472

evaluation’s constraints, as we have not conducted subjec-473

tive assessments via listening tests. While objective met-474

rics offer valuable insights into the model’s performance,475

integrating subjective evaluations would provide a more476

comprehensive understanding of its efficacy in practical477

applications. Future work includes conducting an exten-478

sive subjective evaluation alongside assessing the usability479

of a prototype of the system that is integrated into the real-480

world workflow in the digital audio workstation (DAW).481

Further, work towards developing a robust understanding482

and objective metrics for mix similarity and mixing style483

is imperative for enhancing these systems.484
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